#!/usr/bin/env python # def bernstein_poly ( n, x ): #*****************************************************************************80 # ## BERNSTEIN_POLY evaluates the Bernstein polynomials at a point X. # # Discussion: # # The Bernstein polynomials are assumed to be based on [0,1]. # # Formula: # # B(N,I)(X) = [N!/(I!*(N-I)!)] * (1-X)^(N-I) * X^I # # First values: # # B(0,0)(X) = 1 # # B(1,0)(X) = 1-X # B(1,1)(X) = X # # B(2,0)(X) = (1-X)^2 # B(2,1)(X) = 2 * (1-X) * X # B(2,2)(X) = X^2 # # B(3,0)(X) = (1-X)^3 # B(3,1)(X) = 3 * (1-X)^2 * X # B(3,2)(X) = 3 * (1-X) * X^2 # B(3,3)(X) = X^3 # # B(4,0)(X) = (1-X)^4 # B(4,1)(X) = 4 * (1-X)^3 * X # B(4,2)(X) = 6 * (1-X)^2 * X^2 # B(4,3)(X) = 4 * (1-X) * X^3 # B(4,4)(X) = X^4 # # Special values: # # B(N,I)(X) has a unique maximum value at X = I/N. # # B(N,I)(X) has an I-fold zero at 0 and and N-I fold zero at 1. # # B(N,I)(1/2) = C(N,K) / 2^N # # For a fixed X and N, the polynomials add up to 1: # # Sum ( 0 <= I <= N ) B(N,I)(X) = 1 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 31 December 2014 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the degree of the Bernstein polynomials to be # used. For any N, there is a set of N+1 Bernstein polynomials, # each of degree N, which form a basis for polynomials on [0,1]. # # Input, real X, the evaluation point. # # Output, real BERN[0:N], the values of the N+1 Bernstein polynomials at X. # import numpy as np bern = np.zeros ( n + 1 ); if ( n == 0 ): bern[0] = 1.0 else: bern[0] = 1.0 - x bern[1] = x for i in range ( 2, n + 1 ): bern[i] = x * bern[i-1] for j in range ( i - 1, 0, -1 ): bern[j] = x * bern[j-1] + ( 1.0 - x ) * bern[j] bern[0] = ( 1.0 - x ) * bern[0] return bern def bernstein_poly_test ( ): #*****************************************************************************80 # ## BERNSTEIN_POLY_TEST tests BERNSTEIN_POLY. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 31 December 2014 # # Author: # # John Burkardt # from bernstein_poly_01_values import bernstein_poly_01_values print '' print 'BERNSTEIN_POLY_TEST' print ' BERNSTEIN_POLY computes Bernstein polynomials;' print '' print ' N K X Exact B(N,K)(X)' print '' n_data = 0 while ( True ): n_data, n, k, x, b = bernstein_poly_01_values ( n_data ) if ( n_data == 0 ): break bvec = bernstein_poly ( n, x ) print ' %2d %2d %5g %12g %12g' % ( n, k, x, b, bvec[k] ) print '' print 'BERNSTEIN_POLY_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) bernstein_poly_test ( ) timestamp ( )