#!/usr/bin/env python # def beta_values ( n_data ): #*****************************************************************************80 # ## BETA_VALUES returns some values of the Beta function. # # Discussion: # # Beta(X,Y) = ( Gamma(X) * Gamma(Y) ) / Gamma(X+Y) # # Both X and Y must be greater than 0. # # In Mathematica, the function can be evaluated by: # # Beta[X,Y] # # Properties: # # Beta(X,Y) = Beta(Y,X). # Beta(X,Y) = Integral ( 0 <= T <= 1 ) T^(X-1) (1-T)^(Y-1) dT. # Beta(X,Y) = Gamma(X) * Gamma(Y) / Gamma(X+Y) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 01 January 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real X, Y, the arguments of the function. # # Output, real F, the value of the function. # import numpy as np n_max = 17 f_vec = np.array ( ( \ 0.5000000000000000E+01, \ 0.2500000000000000E+01, \ 0.1666666666666667E+01, \ 0.1250000000000000E+01, \ 0.5000000000000000E+01, \ 0.2500000000000000E+01, \ 0.1000000000000000E+01, \ 0.1666666666666667E+00, \ 0.3333333333333333E-01, \ 0.7142857142857143E-02, \ 0.1587301587301587E-02, \ 0.2380952380952381E-01, \ 0.5952380952380952E-02, \ 0.1984126984126984E-02, \ 0.7936507936507937E-03, \ 0.3607503607503608E-03, \ 0.8325008325008325E-04 ) ) x_vec = np.array ( ( \ 0.2E+00, \ 0.4E+00, \ 0.6E+00, \ 0.8E+00, \ 1.0E+00, \ 1.0E+00, \ 1.0E+00, \ 2.0E+00, \ 3.0E+00, \ 4.0E+00, \ 5.0E+00, \ 6.0E+00, \ 6.0E+00, \ 6.0E+00, \ 6.0E+00, \ 6.0E+00, \ 7.0E+00 ) ) y_vec = np.array ( ( \ 1.0E+00, \ 1.0E+00, \ 1.0E+00, \ 1.0E+00, \ 0.2E+00, \ 0.4E+00, \ 1.0E+00, \ 2.0E+00, \ 3.0E+00, \ 4.0E+00, \ 5.0E+00, \ 2.0E+00, \ 3.0E+00, \ 4.0E+00, \ 5.0E+00, \ 6.0E+00, \ 7.0E+00 ) ) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 x = 0.0 y = 0.0 f = 0.0 else: x = x_vec[n_data] y = y_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, x, y, f def beta_values_test ( ): #*****************************************************************************80 # ## BETA_VALUES_TEST demonstrates the use of BETA_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 December 2014 # # Author: # # John Burkardt # print '' print 'BETA_VALUES_TEST:' print ' BETA_VALUES stores values of the BETA function.' print '' print ' X Y BETA(X,Y)' print '' n_data = 0 while ( True ): n_data, x, y, f = beta_values ( n_data ) if ( n_data == 0 ): break print ' %12f %12f %24.16g' % ( x, y, f ) print '' print 'BETA_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) beta_values_test ( ) timestamp ( )