#!/usr/bin/env python # def bpab ( n, x, a, b ): #*****************************************************************************80 # ## BPAB evaluates at X the Bernstein polynomials based in [A,B]. # # Formula: # # BERN(N,I)(X) = [N!/(I!*(N-I)!)] * (B-X)^(N-I) * (X-A)^I / (B-A)^N # # First values: # # B(0,0)(X) = 1 # # B(1,0)(X) = ( B-X ) / (B-A) # B(1,1)(X) = ( X-A ) / (B-A) # # B(2,0)(X) = ( (B-X)^2 ) / (B-A)^2 # B(2,1)(X) = ( 2 * (B-X) * (X-A) ) / (B-A)^2 # B(2,2)(X) = ( (X-A)^2 ) / (B-A)^2 # # B(3,0)(X) = ( (B-X)^3 ) / (B-A)^3 # B(3,1)(X) = ( 3 * (B-X)^2 * (X-A) ) / (B-A)^3 # B(3,2)(X) = ( 3 * (B-X) * (X-A)^2 ) / (B-A)^3 # B(3,3)(X) = ( (X-A)^3 ) / (B-A)^3 # # B(4,0)(X) = ( (B-X)^4 ) / (B-A)^4 # B(4,1)(X) = ( 4 * (B-X)^3 * (X-A) ) / (B-A)^4 # B(4,2)(X) = ( 6 * (B-X)^2 * (X-A)^2 ) / (B-A)^4 # B(4,3)(X) = ( 4 * (B-X) * (X-A)^3 ) / (B-A)^4 # B(4,4)(X) = ( (X-A)^4 ) / (B-A)^4 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 July 2004 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the degree of the Bernstein polynomials to be used. # For any N, there is a set of N+1 Bernstein polynomials, each of # degree N, which form a basis for polynomials on [A,B]. # # Input, real X, the point at which the polynomials are to be evaluated. # # Input, real A, B, the endpoints of the interval on which the # polynomials are to be based. A and B should not be equal. # # Output, real BERN(0:N), the values of the N+1 Bernstein polynomials at X. # import numpy as np from sys import exit if ( b == a ): print '' print 'BPAB - Fatal error!' print ' A = B = %f' % ( a ) exit ( 'BPAB - Fatal error!' ) bern = np.zeros ( n + 1 ) if ( n == 0 ): bern[0] = 1.0; else: bern[0] = ( b - x ) / ( b - a ); bern[1] = ( x - a ) / ( b - a ); for i in range ( 1, n ): bern[i+1] = ( x - a ) * bern[i] / ( b - a ) for j in range ( i - 1, -1, -1 ): bern[j+1] = ( ( b - x ) * bern[j+1] + ( x - a ) * bern[j] ) / ( b - a ) bern[0] = ( b - x ) * bern[0] / ( b - a ) return bern def bpab_test ( ): #*****************************************************************************80 # ## BPAB_TEST tests BPAB. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 01 January 2015 # # Author: # # John Burkardt # n = 10 x = 0.3 a = 0.0 b = 1.0 bern = bpab ( n, x, a, b ) print '' print 'BPAB_TEST' print ' BPAB computes Bernstein polynomials;' print '' print ' The Bernstein polynomials of degree %d' % ( n ) print ' based on the interval [%f,%f]' % ( a, b ) print ' evaluated at X = %g' % ( x ) print '' print ' I Bern(I,X)' print '' for i in range ( 0, n + 1 ): print ' %2d %12g' % ( i, bern[i] ) print '' print 'BPAB_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) bpab_test ( ) timestamp ( )