#!/usr/bin/env python # def cardan_poly ( n, x, s ): #*****************************************************************************80 # ## CARDAN_POLY evaluates the Cardan polynomials. # # First terms: # # N C(N,S,X) # # 0 2 # 1 X # 2 X^2 - 2 S # 3 X^3 - 3 S X # 4 X^4 - 4 S X^2 + 2 S^2 # 5 X^5 - 5 S X^3 + 5 S^2 X # 6 X^6 - 6 S X^4 + 9 S^2 X^2 - 2 S^3 # 7 X^7 - 7 S X^5 + 14 S^2 X^3 - 7 S^3 X # 8 X^8 - 8 S X^6 + 20 S^2 X^4 - 16 S^3 X^2 + 2 S^4 # 9 X^9 - 9 S X^7 + 27 S^2 X^5 - 30 S^3 X^3 + 9 S^4 X # 10 X^10 - 10 S X^8 + 35 S^2 X^6 - 50 S^3 X^4 + 25 S^4 X^2 - 2 S^5 # 11 X^11 - 11 S X^9 + 44 S^2 X^7 - 77 S^3 X^5 + 55 S^4 X^3 - 11 S^5 X # # Recursion: # # Writing the N-th polynomial in terms of its coefficients: # # C(N,S,X) = sum ( 0 <= I <= N ) D(N,I) * S^(N-I)/2 * X^I # # then # # D(0,0) = 1 # # D(1,1) = 1 # D(1,0) = 0 # # D(N,N) = 1 # D(N,K) = D(N-1,K-1) - D(N-2,K) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 28 February 2015 # # Author: # # John Burkardt # # Reference: # # Thomas Osler, # Cardan Polynomials and the Reduction of Radicals, # Mathematics Magazine, # Volume 74, Number 1, February 2001, pages 26-32. # # Parameters: # # Input, integer N, the highest polynomial to compute. # # Input, real X, the point at which the polynomials are to be computed. # # Input, real S, the value of the parameter, which must be positive. # # Output, real CX(0:N), the values of the Cardan polynomials at X. # import numpy as np from math import sqrt from cheby_t_poly import cheby_t_poly s2 = np.sqrt ( s ) xvec = np.zeros ( 1 ) xvec[0] = 0.5 * x / s2 # # This returns a 1xN matrix! # cmat = cheby_t_poly ( 1, n, xvec ) cx = np.zeros ( n + 1 ); fact = 1.0 for i in range ( 0, n + 1 ): cx[i] = 2.0 * fact * cmat[0,i] fact = fact * s2 return cx def cardan_poly_test ( ): #*****************************************************************************80 # ## CARDAN_POLY_TEST tests CARDAN_POLY. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 28 February 2015 # # Author: # # John Burkardt # from cardan_poly_coef import cardan_poly_coef from r8poly_value_horner import r8poly_value_horner n_max = 10 s = 0.5 x = 0.25 print '' print 'CARDAN_POLY_TEST' print ' CARDAN_POLY evaluates a Cardan polynomial directly.' print '' print ' Compare CARDAN_POLY_COEF + R8POLY_VAL_HORNER' print ' versus CARDAN_POLY alone.' print '' print ' Evaluate polynomials at X = %f' % ( x ) print ' We use the parameter S = %f' % ( s ) print '' print ' Order Horner Direct' print '' cx2 = cardan_poly ( n_max, x, s ) for n in range ( 0, n_max + 1 ): c = cardan_poly_coef ( n, s ) cx1 = r8poly_value_horner ( n, c, x ) print ' %2d %12g %12g' % ( n, cx1, cx2[n] ) print '' print 'CARDAN_POLY_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) cardan_poly_test ( ) timestamp ( )