#!/usr/bin/env python # def cardan_poly_coef ( n, s ): #*****************************************************************************80 # ## CARDAN_POLY_COEF computes the coefficients of the N-th Cardan polynomial. # # First terms: # # 2 # 0 1 # -2 S 0 1 # 0 -3 S 0 1 # 2 S^2 0 -4 S 0 1 # 0 5 S^2 0 -5 S 0 1 # -2 S^3 0 9 S^2 0 -6 S 0 1 # 0 7 S^3 0 14 S^2 0 -7 S 0 1 # 2 S^4 0 -16 S^3 0 20 S^2 0 -8 S 0 1 # 0 9 S^4 0 -30 S^3 0 27 S^2 0 -9 S 0 1 # -2 S^5 0 25 S^4 0 -50 S^3 0 35 S^2 0 -10 S 0 1 # 0 -11 S^5 0 55 S^4 0 -77 S^3 0 +44 S^2 0 -11 S 0 1 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 February 2015 # # Author: # # John Burkardt # # Reference: # # Thomas Osler, # Cardan Polynomials and the Reduction of Radicals, # Mathematics Magazine, # Volume 74, Number 1, February 2001, pages 26-32. # # Parameters: # # Input, integer N, the order of the polynomial # # Input, real S, the value of the parameter, which must be positive. # # Output, real C(1:N+1), the coefficients. C(1) is the constant term, # and C(N+1) is the coefficient of X^N. # import numpy as np c = np.zeros ( n + 1 ) if ( n < 0 ): return c c[0] = 2.0 if ( n == 0 ): return c cm1 = np.zeros ( n + 1 ) cm2 = np.zeros ( n ) for i in range ( 0, n + 1 ): cm1[i] = c[i] c[0] = 0.0 c[1] = 1.0 for i in range ( 1, n ): for j in range ( 0, i ): cm2[j] = cm1[j] for j in range ( 0, i + 1 ): cm1[j] = c[j] c[0] = 0.0 for j in range ( 1, i + 2 ): c[j] = cm1[j-1] for j in range ( 0, i ): c[j] = c[j] - s * cm2[j] return c def cardan_poly_coef_test ( ): #*****************************************************************************80 # ## CARDAN_POLY_COEF_TEST tests CARDAN_POLY_COEF. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 February 2015 # # Author: # # John Burkardt # n_max = 10 s = 1.0 print '' print 'CARDAN_POLY_COEF_TEST' print ' CARDAN_POLY_COEF returns the coefficients of a Cardan polynomial.' print '' print ' We use the parameter S = %g' % ( s ) print '' print ' Table of polyomial coefficients:' print '' for n in range ( 0, n_max + 1 ): c = cardan_poly_coef ( n, s ) print ' %2d: ' % ( n ), for i in range ( 0, n + 1 ): print ' %9f' % ( c[i] ), print '' print '' print 'CARDAN_POLY_COEF_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) cardan_poly_coef_test ( ) timestamp ( )