#!/usr/bin/env python # def charlier ( n, a, x ): #*****************************************************************************80 # ## CHARLIER evaluates Charlier polynomials at a point. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 January 2015 # # Author: # # John Burkardt # # Reference: # # J Simoes Pereira, # Algorithm 234: Poisson-Charliers Polynomials, # Communications of the ACM, # Volume 7, Number 7, page 420, July 1964. # # Walter Gautschi, # Orthogonal Polynomials: Computation and Approximation, # Oxford, 2004, # ISBN: 0-19-850672-4, # LC: QA404.5 G3555. # # Gabor Szego, # Orthogonal Polynomials, # American Mathematical Society, 1975, # ISBN: 0821810235, # LC: QA3.A5.v23. # # Eric Weisstein, # CRC Concise Encyclopedia of Mathematics, # CRC Press, 2002, # Second edition, # ISBN: 1584883472, # LC: QA5.W45. # # Parameters: # # Input, integer N, the maximum order of the polynomial. # N must be at least 0. # # Input, real A, the parameter. A must not be 0. # # Input, real X, the evaluation point. # # Output, real V(0:N), the value of the polynomials at X. # import numpy as np from sys import exit if ( a == 0.0 ): print '' print 'CHARLIER - Fatal error!' print ' Parameter A cannot be zero.' exit ( 'CHARLIER - Fatal error!' ); if ( n < 0 ): print '' print 'CHARLIER - Fatal error!' print ' Parameter N must be nonnegative.' exit ( 'CHARLIER - Fatal error!' ); v = np.zeros ( n + 1 ) v[0] = 1.0 if ( 0 < n ): v[1] = - x / a if ( 1 < n ): for i in range ( 2, n + 1 ): v[i] = ( ( i - 1 + a - x ) * v[i-1] - ( i - 1 ) * v[i-2] ) / a return v def charlier_test ( ): #*****************************************************************************80 # ## CHARLIER_TEST tests CHARLIER. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 January 2015 # # Author: # # John Burkardt # import numpy as np test_num = 5 a_test = np.array ( [ 0.25, 0.5, 1.0, 2.0, 10.0 ] ) n = 5 print '' print 'CHARLIER_TEST:' print ' CHARLIER evaluates Charlier polynomials.' print '' print ' N A X P(N,A,X)' for test in range ( 0, test_num ): n = 5 a = a_test[test] for j in range ( 0, 6 ): x = j / 2.0 value = charlier ( n, a, x ) print '' for i in range ( 0, n + 1 ): print ' %8d %8f %8f %14f' % ( i, a, x, value[i] ) print '' print 'CHARLIER_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) charlier_test ( ) timestamp ( )