#!/usr/bin/env python # def cheby_u_poly ( m, n, x ): #*****************************************************************************80 # ## CHEBY_U_POLY evaluates Chebyshev polynomials U(n,x). # # Differential equation: # # (1-X*X) Y'' - 3 X Y' + N (N+2) Y = 0 # # First terms: # # U(0,X) = 1 # U(1,X) = 2 X # U(2,X) = 4 X^2 - 1 # U(3,X) = 8 X^3 - 4 X # U(4,X) = 16 X^4 - 12 X^2 + 1 # U(5,X) = 32 X^5 - 32 X^3 + 6 X # U(6,X) = 64 X^6 - 80 X^4 + 24 X^2 - 1 # U(7,X) = 128 X^7 - 192 X^5 + 80 X^3 - 8X # # Recursion: # # U(0,X) = 1, # U(1,X) = 2 * X, # U(N,X) = 2 * X * U(N-1,X) - U(N-2,X) # # Norm: # # Integral ( -1 <= X <= 1 ) ( 1 - X^2 ) * U(N,X)^2 dX = PI/2 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 July 2004 # # Author: # # John Burkardt # # Parameters: # # Input, integer M, the number of evaluation points. # # Input, integer N, the highest polynomial to compute. # # Input, real X(M), the evaluation points. # # Output, real V(M,N+1), the values of the Chebyshev polynomials # 0 through N at X(1:M). # import numpy as np v = np.zeros ( [ m, n + 1 ] ) for i in range ( 0, m ): v[i,0] = 1.0 if ( n < 1 ): return v for i in range ( 0, m ): v[i,1] = 2.0 * x[i] for j in range ( 1, n ): for i in range ( 0, m ): v[i,j+1] = 2.0 * x[i] * v[i,j] - v[i,j-1] return v def cheby_u_poly_test ( ): #*****************************************************************************80 # ## CHEBY_U_POLY_TEST tests CHEBY_U_POLY. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 10 January 2015 # # Author: # # John Burkardt # import numpy as np from cheby_u_poly_values import cheby_u_poly_values n_max = 12 xv = np.zeros ( 1 ) print '' print 'CHEBY_U_POLY_TEST' print ' CHEBY_U_POLY evaluates the Chebyshev U polynomial.' print '' print ' N X Exact F U(N)(X)' print '' n_data = 0 while ( True ): [ n_data, n, x, fx ] = cheby_u_poly_values ( n_data ) if ( n_data == 0 ): break m = 1 xv[0] = x v = cheby_u_poly ( m, n, xv ) fx2 = v[0,n] print ' %6d %8g %12g %12g' % ( n, x, fx, fx2 ) print '' print 'CHEBY_U_POLY_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) cheby_u_poly_test ( ) timestamp ( )