#!/usr/bin/env python # def cheby_u_poly_zero ( n ): #*****************************************************************************80 # ## CHEBY_U_POLY_ZERO returns zeroes of Chebyshev polynomials U(n,x). # # Discussion: # # The I-th zero of U(n,x) is cos(I*PI/(N+1)), I = 1 to N # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the polynomial. # # Output, real Z(N), the zeroes of U(N)(X). # import numpy as np z = np.zeros ( n ) for i in range ( 0, n ): angle = float ( i + 1 ) * np.pi / float ( n + 1 ) z[i] = np.cos ( angle ) return z def cheby_u_poly_zero_test ( ): #*****************************************************************************80 # ## CHEBY_U_POLY_ZERO_TEST tests CHEBY_U_POLY_ZERO. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 January 2015 # # Author: # # John Burkardt # from cheby_u_poly import cheby_u_poly n_max = 4 print '' print 'CHEBY_U_POLY_ZERO_TEST:' print ' CHEBY_U_POLY_ZERO returns zeroes of U(N,X).' print '' print ' N X U(N,X)' print '' for n in range ( 1, n_max + 1 ): z = cheby_u_poly_zero ( n ) fx = cheby_u_poly ( n, n, z ) for i in range ( 0, n ): print ' %8d %11g %14g' % ( n, z[i], fx[i,n] ) print '' print '' print 'CHEBY_U_POLY_ZERO_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) cheby_u_poly_zero_test ( ) timestamp ( )