#!/usr/bin/env python # def chebyshev_discrete ( n, m, x ): #*****************************************************************************80 # ## CHEBYSHEV_DISCRETE evaluates discrete Chebyshev polynomials at a point. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 January 2015 # # Author: # # John Burkardt # # Reference: # # Walter Gautschi, # Orthogonal Polynomials: Computation and Approximation, # Oxford, 2004, # ISBN: 0-19-850672-4, # LC: QA404.5 G3555. # # Parameters: # # Input, integer N, the highest order of the polynomials to be evaluated. # 0 <= N <= M. # # Input, integer M, the maximum order of the polynomials. # 0 <= M. # # Input, real X, the evaluation point. # # Output, real V(N+1), the value of the polynomials at X. # import numpy as np from sys import exit if ( m < 0 ): print '' print 'CHEBYSHEV_DISCRETE - Fatal error!' print ' Parameter M must be nonnegative.' exit ( 'CHEBYSHEV_DISCRETE - Fatal error!'); if ( n < 0 ): print '' print 'CHEBYSHEV_DISCRETE - Fatal error!' print ' Parameter N must be nonnegative.' exit ( 'CHEBYSHEV_DISCRETE - Fatal error!'); if ( m < n ): print '' print 'CHEBYSHEV_DISCRETE - Fatal error!' print ' Parameter N must be no greater than M.' exit ( 'CHEBYSHEV_DISCRETE - Fatal error!'); v = np.zeros ( n + 1 ) v[0] = 1.0 if ( 0 < n ): v[1] = 2.0 * x + 1 - m if ( 1 < n ): for i in range ( 1, n ): v[i+1] = ( \ ( 2 * i + 1 ) * ( 2.0 * x + 1 - m ) * v[i] \ - i * ( m + i ) * ( m - i ) * v[i-1] \ ) / ( i + 1 ) return v def chebyshev_discrete_test ( ): #*****************************************************************************80 # ## CHEBYSHEV_DISCRETE_TEST tests CHEBYSHEV_DISCRETE. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 January 2015 # # Author: # # John Burkardt # import numpy as np print '' print 'CHEBYSHEV_DISCRETE_TEST' print ' CHEBY_T_POLY evaluates the Chebyshev T polynomial.' print '' print ' N M X T(N,M,X)' print '' n = 5 m = 5 for j in range ( 0, 6 ): x = j / 2.0 value = chebyshev_discrete ( n, m, x ) print '' for i in range ( 0, n + 1 ): print ' %8d %8d %12g %12g' % ( i, m, x, value[i] ) print '' print 'CHEBYSHEV_DISCRETE_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) chebyshev_discrete_test ( ) timestamp ( )