#!/usr/bin/env python # def comb_row_next ( n, c ): #*****************************************************************************80 # ## COMB_ROW_NEXT computes the next row of Pascal's triangle. # # Discussion: # # Row N contains the combinatorial coefficients # # C(N,0), C(N,1), C(N,2), ... C(N,N) # # The sum of the elements of row N is equal to 2**N. # # C(N,K) = N! / ( K! * (N-K)! ) # # First terms: # # N K:0 1 2 3 4 5 6 7 8 9 10 # # 0 1 # 1 1 1 # 2 1 2 1 # 3 1 3 3 1 # 4 1 4 6 4 1 # 5 1 5 10 10 5 1 # 6 1 6 15 20 15 6 1 # 7 1 7 21 35 35 21 7 1 # 8 1 8 28 56 70 56 28 8 1 # 9 1 9 36 84 126 126 84 36 9 1 # 10 1 10 45 120 210 252 210 120 45 10 1 # # Recursion: # # C(N,K) = C(N-1,K-1)+C(N-1,K) # # Special values: # # C(N,0) = C(N,N) = 1 # C(N,1) = C(N,N-1) = N # C(N,N-2) = sum ( 1 <= I <= N ) N # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 25 December 2014 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the desired row. # # Input/output, integer C(N+1). On input, row N-1 is contained in # entries 0 through N-1. On output, row N is contained in entries 0 # through N. # if ( n < 0 ): return c[n] = 1 for i in range ( n - 1, 0, -1 ): c[i] = c[i] + c[i-1] c[0] = 1 return c def comb_row_next_test ( ): #*****************************************************************************80 # ## COMB_ROW_NEXT_TEST tests COMB_ROW_NEXT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 25 December 2014 # # Author: # # John Burkardt # import numpy as np n_max = 10 print '' print 'COMB_ROW_NEXT_TEST' print ' COMB_ROW_NEXT computes the next row of Pascals triangle.' print '' c = np.zeros ( n_max + 1 ) for n in range ( 0, n_max + 1 ): c = comb_row_next ( n, c ) print ' %2d ' % ( n ), for i in range ( 0, n + 1 ): print ' %3d' % ( c[i] ), print '' print '' print 'COMB_ROW_NEXT_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) comb_row_next_test ( ) timestamp ( )