#!/usr/bin/env python # def euler_number ( n ): #*****************************************************************************80 # ## EULER_NUMBER computes the Euler numbers. # # Discussion: # # The Euler numbers can be evaluated in Mathematica by the call # # EulerE[n] # # These numbers rapidly get too big to store in an ordinary integer! # # The terms of odd index are 0. # # E(N) = -C(N,N-2) * E(N-2) - C(N,N-4) * E(N-4) - ... - C(N,0) * E(0). # # First terms: # # E0 = 1 # E1 = 0 # E2 = -1 # E3 = 0 # E4 = 5 # E5 = 0 # E6 = -61 # E7 = 0 # E8 = 1385 # E9 = 0 # E10 = -50521 # E11 = 0 # E12 = 2702765 # E13 = 0 # E14 = -199360981 # E15 = 0 # E16 = 19391512145 # E17 = 0 # E18 = -2404879675441 # E19 = 0 # E20 = 370371188237525 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 04 February 2015 # # Author: # # John Burkardt # # Reference: # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input, integer N, the index of the last Euler number to compute. # # Output, integer E[0:N], the Euler numbers. # import numpy as np from i4_choose import i4_choose e = np.zeros ( n + 1 ) e[0] = 1 if ( 0 < n ): e[1] = 0 if ( 1 < n ): e[2] = -1 for i in range ( 3, n + 1 ): e[i] = 0 if ( ( i % 2 ) == 0 ): for j in range ( 2, i + 1, 2 ): e[i] = e[i] - i4_choose ( i, j ) * e[i-j] return e def euler_number_test ( ): #*****************************************************************************80 # ## EULER_NUMBER_TEST tests EULER_NUMBER. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 04 February 2015 # # Author: # # John Burkardt # from euler_number_values import euler_number_values print '' print 'EULER_NUMBER_TEST' print ' EULER_NUMBER computes Euler numbers;' print '' print ' I Exact Euler' print '' n_data = 0 while ( True ): n_data, n, e1 = euler_number_values ( n_data ) if ( n_data == 0 ): break e2 = euler_number ( n ) print ' %2d %14d %14d' % ( n, e1, e2[n] ) print '' print 'EULER_NUMBER_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) euler_number_test ( ) timestamp ( )