#!/usr/bin/env python # def euler_number2 ( n ): #*****************************************************************************80 # ## EULER_NUMBER2 computes the Euler numbers. # # Discussion: # # The Euler numbers can be evaluated in Mathematica by the call # # EulerE[n] # # These numbers rapidly get too big to store in an ordinary integer! # # The terms of odd index are 0. # # E(N) = -C(N,N-2) * E(N-2) - C(N,N-4) * E(N-4) - ... - C(N,0) * E(0). # # First terms: # # E0 = 1 # E1 = 0 # E2 = -1 # E3 = 0 # E4 = 5 # E5 = 0 # E6 = -61 # E7 = 0 # E8 = 1385 # E9 = 0 # E10 = -50521 # E11 = 0 # E12 = 2702765 # E13 = 0 # E14 = -199360981 # E15 = 0 # E16 = 19391512145 # E17 = 0 # E18 = -2404879675441 # E19 = 0 # E20 = 370371188237525 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 February 2015 # # Author: # # John Burkardt # # Reference: # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input, integer N, the index of the Euler number. # # Output, real VALUE, the value of the Euler number. # import numpy as np import r8_factorial as r8_factorial evec = np.array ( ( 1.0, -1.0, 5.0, -61.0, 1385.0, -50521.0, 2702765.0 ) ) itmax = 1000 r8_pi = 3.141592653589793 value = 0.0 if ( ( n % 2 ) == 0 ): if ( n <= 12 ): i = ( n // 2 ) value = evec[i] else: sum1 = 0.0 for i in range ( 0, itmax ): term = 1.0 / float ( ( 2 * i - 1 ) ** ( n + 1 ) ) if ( ( i % 2 ) == 0 ): sum1 = sum1 + term else: sum1 = sum1 - term if ( abs ( term ) < 1.0E-10 ): break elif ( abs ( term ) < 1.0E-08 * abs ( sum1 ) ): break value = 2.0 ** ( n + 2 ) * sum1 * r8_factorial ( n ) / r8_pi ** ( n + 1 ) if ( ( n % 4 ) != 0 ): value = -value return value def euler_number2_test ( ): #*****************************************************************************80 # ## EULER_NUMBER2_TEST tests EULER_NUMBER2. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 February 2015 # # Author: # # John Burkardt # from euler_number_values import euler_number_values print '' print 'EULER_NUMBER2_TEST' print ' EULER_NUMBER2 computes Euler numbers;' print '' print ' I Exact Euler' print '' n_data = 0 while ( True ): n_data, n, e1 = euler_number_values ( n_data ) if ( n_data == 0 ): break e2 = euler_number2 ( n ) print ' %2d %14d %14d' % ( n, e1, e2 ) print '' print 'EULER_NUMBER2_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) euler_number2_test ( ) timestamp ( )