#!/usr/bin/env python # def euler_poly ( n, x ): #*****************************************************************************80 # ## EULER_POLY evaluates the N-th Euler polynomial at X. # # First values: # # E(0,X) = 1 # E(1,X) = X - 1/2 # E(2,X) = X^2 - X # E(3,X) = X^3 - 3/2 X^2 + 1/4 # E(4,X) = X^4 - 2 * X^3 + X # E(5,X) = X^5 - 5/2 X^4 + 5/2 X^2 - 1/2 # E(6,X) = X^6 - 3 X^5 + 5 X^3 - 3 X # E(7,X) = X^7 - 7/2 X^6 + 35/4 X^4 - 21/2 X^2 + 17/8 # E(8,X) = X^8 - 4 X^7 + 14 X^5 - 28 X^3 + 17 X # # Special values: # # E'(N,X) = N * E(N-1,X) # # E(N,1/2) = E(N) / 2^N, where E(N) is the N-th Euler number. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the Euler polynomial to # be evaluated. N must be 0 or greater. # # Input, real X, the value at which the polynomial is to # be evaluated. # # Output, real VALUE, the value of E(N,X). # from bernoulli_poly2 import bernoulli_poly2 bx1 = bernoulli_poly2 ( n + 1, x ) bx2 = bernoulli_poly2 ( n + 1, 0.5 * x ) value = 2.0 * ( bx1 - bx2 * 2.0 ** ( n + 1 ) ) / float ( n + 1 ) return value def euler_poly_test ( ): #*****************************************************************************80 # ## EULER_POLY_TEST tests EULER_POLY. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 February 2015 # # Author: # # John Burkardt # n = 15 x = 0.5 print '' print 'EULER_POLY_TEST' print ' EULER_POLY computes Euler polynomials;' print '' print ' X = %g' % ( x ) print '' print ' N X F(X)' print '' for i in range ( 1, n + 1 ): value = euler_poly ( i, x ) print ' %2d %12f %14g' % ( i, x, value ) print '' print 'EULER_POLY_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) euler_poly_test ( ) timestamp ( )