#!/usr/bin/env python # def eulerian ( n ): #*****************************************************************************80 # ## EULERIAN computes the Eulerian number E(N,K). # # Definition: # # A run in a permutation is a sequence of consecutive ascending values. # # E(N,K) is the number of permutations of N objects which contain # exactly K runs. # # Examples: # # N = 7 # # 1 0 0 0 0 0 0 # 1 1 0 0 0 0 0 # 1 4 1 0 0 0 0 # 1 11 11 1 0 0 0 # 1 26 66 26 1 0 0 # 1 57 302 302 57 1 0 # 1 120 1191 2416 1191 120 1 # # Recursion: # # E(N,K) = K * E(N-1,K) + (N-K+1) * E(N-1,K-1). # # Properties: # # E(N,1) = E(N,N) = 1. # E(N,K) = 0 if K <= 0 or N < K. # sum ( 1 <= K <= N ) E(N,K) = N!. # X^N = sum ( 0 <= K <= N ) COMB(X+K-1, N ) E(N,K) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 04 February 2015 # # Author: # # John Burkardt # # Reference: # # Dennis Stanton and Dennis White, # Constructive Combinatorics, # Springer Verlag, 1986 # # Parameters: # # Input, integer N, the number of rows desired. # # Output, integer E(N,N), the first N rows of Eulerian numbers. # import numpy as np e = np.zeros ( ( n, n ) ) # # Construct rows 1, 2, ..., N of the Eulerian triangle. # e[0,0] = 1 for j in range ( 1, n ): e[0,j] = 0 for i in range ( 1, n ): e[i,0] = 1 for j in range ( 1, n ): e[i,j] = ( j + 1 ) * e[i-1,j] + ( i - j + 1 ) * e[i-1,j-1] return e def eulerian_test ( ): #*****************************************************************************80 # ## EULERIAN_TEST tests EULERIAN. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 04 February 2015 # # Author: # # John Burkardt # print '' print 'EULERIAN_TEST' print ' EULERIAN computes Eulerian numbers.' n = 7 e = eulerian ( n ) for i in range ( 0, n ): for j in range ( 0, n ): print ' %4d' % ( e[i,j] ), print '' print '' print 'EULERIAN_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) eulerian_test ( ) timestamp ( )