#!/usr/bin/env python # def f_hofstadter ( n ): #*****************************************************************************80 # ## F_HOFSTADTER computes the Hofstadter F sequence. # # Discussion: # # F(N) = 0 if N = 0 # = N - F ( N - 1 ), otherwise. # # F(N) is defined for all nonnegative integers, and turns out # to be equal to int ( ( N + 1 ) / 2 ). # # Table: # # N F(N) # -- ---- # # 0 0 # 1 1 # 2 1 # 3 2 # 4 2 # 5 3 # 6 3 # 7 4 # 8 4 # 9 5 # 10 5 # 11 6 # 12 6 # 13 7 # 14 7 # 15 8 # 16 8 # 17 9 # 18 9 # 19 10 # 20 10 # 21 11 # 22 11 # 23 12 # 24 12 # 25 13 # 26 13 # 27 14 # 28 14 # 29 15 # 30 15 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 06 February 2015 # # Author: # # John Burkardt # # Reference: # # Douglas Hofstadter, # Goedel, Escher, Bach, # Basic Books, 1979. # # Parameters: # # Input, integer N, the argument of the function. # # Output, integer VALUE, the value of the function. # if ( n <= 0 ): value = 0 else: value = n - f_hofstadter ( n - 1 ) return value def f_hofstadter_test ( ): #*****************************************************************************80 # ## F_HOFSTADTER_TEST tests F_HOFSTADTER. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 08 February 2015 # # Author: # # John Burkardt # print '' print 'F_HOFSTADTER_TEST' print ' F_HOFSTADTER evaluates Hofstadter\'s recursive F function.' print '' print ' N F(N)' print '' for i in range ( 0, 31 ): f = f_hofstadter ( i ) print ' %6d %6d' % ( i, f ) print '' print 'F_HOFSTADTER_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) f_hofstadter_test ( ) timestamp ( )