#!/usr/bin/env python # def fibonacci_recursive ( n ): #*****************************************************************************80 # ## FIBONACCI_RECURSIVE computes the first N Fibonacci numbers. # # Algebraic equation: # # The 'golden ratio' PHI = (1+sqrt(5))/2 satisfies the equation # # X*X-X-1=0 # # which is often written as: # # X 1 # --- = ------ # 1 X - 1 # # expressing the fact that a rectangle, whose sides are in proportion X:1, # is similar to the rotated rectangle after a square of side 1 is removed. # # <----X----> # # +-----*---* # : : : 1 # : : : # +-----*---+ # <--1-> # # Formula: # # Let # # PHIP = ( 1 + sqrt(5) ) / 2 # PHIM = ( 1 - sqrt(5) ) / 2 # # Then # # F(N) = ( PHIP^N + PHIM^N ) / sqrt(5) # # Moreover, F(N) can be computed by computing PHIP**N / sqrt(5) and rounding # to the nearest whole number. # # First terms: # # 1 # 1 # 2 # 3 # 5 # 8 # 13 # 21 # 34 # 55 # 89 # 144 # # The 40th number is 102,334,155. # The 50th number is 12,586,269,025. # The 100th number is 354,224,848,179,261,915,075. # # Recursion: # # F(1) = 1 # F(2) = 1 # # F(N) = F(N-1) + F(N-2) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 07 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the highest Fibonacci number to compute. # # Output, integer F(N+1), the first N Fibonacci numbers. # import numpy as np f = np.zeros ( n + 1 ) f[0] = 0 if ( 0 < n ): f[1] = 1 if ( 1 < n ): f[2] = 1 for i in range ( 3, n + 1 ): f[i] = f[i-1] + f[i-2] return f def fibonacci_recursive_test ( ): #*****************************************************************************80 # ## FIBONACCI_RECURSIVE_TEST tests FIBONACCI_RECURSIVE. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 07 February 2015 # # Author: # # John Burkardt # from i4vec_print import i4vec_print n = 20 print '' print 'FIBONACCI_RECURSIVE_TEST' print ' FIBONACCI_RECURSIVE computes Fibonacci numbers recursively;' f = fibonacci_recursive ( n ) i4vec_print ( n + 1, f, ' The Fibonacci numbers:' ) print '' print 'FIBONACCI_RECURSIVE_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) fibonacci_recursive_test ( ) timestamp ( )