#!/usr/bin/env python # def g_hofstadter ( n ): #*****************************************************************************80 # ## G_HOFSTADTER computes the Hofstadter G sequence. # # Discussion: # # G(N) = 0 if N = 0 # = N - G ( G ( N - 1 ) ), otherwise. # # G(N) is defined for all nonnegative integers. # # The value of G(N) turns out to be related to the Zeckendorf # representation of N as a sum of non-consecutive Fibonacci numbers. # To compute G(N), determine the Zeckendorf representation: # # N = sum ( 1 <= I <= M ) F(I) # # and reduce the index of each Fibonacci number by 1: # # G(N) = sum ( 1 <= I <= M ) F(I-1) # # However, this is NOT how the computation is done in this routine. # Instead, a straightforward recursive function call is defined # to correspond to the definition of the mathematical function. # # Table: # # N G(N) Zeckendorf Decremented # -- ---- ---------- ----------- # # 1 1 1 1 # 2 1 2 1 # 3 2 3 2 # 4 3 3 + 1 2 + 1 # 5 3 5 3 # 6 4 5 + 1 3 + 1 # 7 4 5 + 2 3 + 1 # 8 5 8 5 # 9 6 8 + 1 5 + 1 # 10 6 8 + 2 5 + 1 # 11 7 8 + 3 5 + 2 # 12 8 8 + 3 + 1 5 + 2 + 1 # 13 8 13 8 # 14 9 13 + 1 8 + 1 # 15 9 13 + 2 8 + 1 # 16 10 13 + 3 8 + 2 # 17 11 13 + 3 + 1 8 + 2 + 1 # 18 11 13 + 5 8 + 3 # 19 12 13 + 5 + 1 8 + 3 + 1 # 20 12 13 + 5 + 2 8 + 3 + 1 # 21 13 21 13 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 08 February 2015 # # Author: # # John Burkardt # # Reference: # # Douglas Hofstadter, # Goedel, Escher, Bach, # Basic Books, 1979. # # Parameters: # # Input, integer N, the argument of the function. # # Output, integer VALUE, the value of the function. # if ( n <= 0 ): value = 0 else: value = n - g_hofstadter ( g_hofstadter ( n - 1 ) ) return value def g_hofstadter_test ( ): #*****************************************************************************80 # ## G_HOFSTADTER_TEST tests G_HOFSTADTER. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 08 February 2015 # # Author: # # John Burkardt # print '' print 'G_HOFSTADTER_TEST' print ' G_HOFSTADTER evaluates Hofstadter\'s recursive G function.' print '' print ' N G(N)' print '' for i in range ( 0, 31 ): g = g_hofstadter ( i ) print ' %6d %6d' % ( i, g ) print '' print 'G_HOFSTADTER_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) g_hofstadter_test ( ) timestamp ( )