#!/usr/bin/env python # def gegenbauer_poly ( n, alpha, x ): #*****************************************************************************80 # ## GEGENBAUER_POLY computes the Gegenbauer polynomials C(I,ALPHA)(X). # # Discussion: # # The Gegenbauer polynomial can be evaluated in Mathematica with # the command # # GegenbauerC[n,m,x] # # Differential equation: # # (1-X*X) Y'' - (2 ALPHA + 1) X Y' + N (N + 2 ALPHA) Y = 0 # # Recursion: # # C(0,ALPHA,X) = 1, # C(1,ALPHA,X) = 2*ALPHA*X # C(N,ALPHA,X) = ( ( 2*N-2+2*ALPHA) * X * C(N-1,ALPHA,X) # + ( -N+2-2*ALPHA) * C(N-2,ALPHA,X) ) / N # # Restrictions: # # ALPHA must be greater than -0.5. # # Special values: # # If ALPHA = 1, the Gegenbauer polynomials reduce to the Chebyshev # polynomials of the second kind. # # Norm: # # Integral ( -1 <= X <= 1 ) # ( 1 - X^2 )^( ALPHA - 0.5 ) * C(N,ALPHA,X)^2 dX # # = PI * 2^( 1 - 2 * ALPHA ) * Gamma ( N + 2 * ALPHA ) # / ( N! * ( N + ALPHA ) * ( Gamma ( ALPHA ) )^2 ) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 09 February 2015 # # Author: # # John Burkardt # # Reference: # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input, integer N, the highest order polynomial to compute. # Note that polynomials 0 through N will be computed. # # Input, real ALPHA, a parameter which is part of the definition of # the Gegenbauer polynomials. It must be greater than -0.5. # # Input, real X, the point at which the polynomials are to be evaluated. # # Output, real CX(1:N+1), the values of the first N+1 Gegenbauer # polynomials at the point X. # import numpy as np if ( alpha <= -0.5 ): print '' print 'GEGENBAUER_POLY - Fatal error!' print ' Illegal value of ALPHA = %f' % ( alpha ) print ' but ALPHA must be greater than -0.5.' sys.error ( 'GEGENBAUER_POLY - Fatal error!' ); cx = np.zeros ( n + 1 ); cx[0] = 1.0 if ( 0 < n ): cx[1] = 2.0 * alpha * x for i in range ( 2, n + 1 ): cx[i] = ( float ( 2 * i - 2 + 2.0 * alpha ) * x * cx[i] \ + float ( - i + 2 - 2.0 * alpha ) * cx[i-1] ) \ / float ( i ); return cx def gegenbauer_poly_test ( ): #*****************************************************************************80 # ## GEGENBAUER_POLY_TEST tests GEGENBAUER_POLY. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 09 February 2015 # # Author: # # John Burkardt # import numpy as np from gegenbauer_poly_values import gegenbauer_poly_values print '' print 'GEGENBAUER_POLY_TEST' print ' GEGENBAUER_POLY computes values of the Gegenbauer polynomial.' print '' print ' N A X GPV GEGENBAUER' print '' n_data = 0 while ( True ): [ n_data, n, a, x, fx ] = gegenbauer_poly_values ( n_data ) if ( n_data == 0 ): break c = gegenbauer_poly ( n, a, x ) fx2 = c[n]; print ' %6d %8g %8g %12g %12g' % ( n, a, x, fx, fx2 ) print '' print 'GEGENBAUER_POLY_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) gegenbauer_poly_test ( ) timestamp ( )