#!/usr/bin/env python # def gen_laguerre_poly ( n, alpha, x ): #*****************************************************************************80 # ## GEN_LAGUERRE_POLY evaluates generalized Laguerre polynomials. # # Differential equation: # # X * Y'' + (ALPHA+1-X) * Y' + N * Y = 0 # # Recursion: # # L(0,ALPHA)(X) = 1 # L(1,ALPHA)(X) = 1+ALPHA-X # # L(N,ALPHA)(X) = ( (2*N-1+ALPHA-X) * L(N-1,ALPHA)(X) # - (N-1+ALPHA) * L(N-2,ALPHA)(X) ) / N # # Restrictions: # # -1 < ALPHA # # Special values: # # For ALPHA = 0, the generalized Laguerre polynomial L(N,ALPHA)(X) # is equal to the Laguerre polynomial L(N)(X). # # For ALPHA integral, the generalized Laguerre polynomial # L(N,ALPHA)(X) equals the associated Laguerre polynomial L(N,ALPHA)(X). # # Norm: # # Integral ( 0 <= X < Infinity ) exp ( - X ) * L(N,ALPHA)(X)**2 dX # = Gamma ( N + ALPHA + 1 ) / N! # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 10 February 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Parameters: # # Input, integer N, the highest order function to compute. # # Input, real ALPHA, the parameter. -1 < ALPHA is required. # # Input, real X, the point at which the functions are to be # evaluated. # # Output, real CX(1:N+1), the polynomials of # degrees 0 through N evaluated at the point X. # import numpy as np from sys import exit if ( alpha <= -1.0 ): print '' print 'GEN_LAGUERRE_POLY - Fatal error!' print ' The input value of ALPHA is %f' % ( alpha ) print ' but ALPHA must be greater than -1.' exit ( 'GEN_LAGUERRE_POLY - Fatal error!' ) cx = np.zeros ( n + 1 ) cx[0] = 1.0 if ( 0 < n ): cx[1] = 1.0 + alpha - x for i in range ( 2, n ): cx[i] = ( ( float ( 2 * i - 1 ) + alpha - x ) * cx[i-1] \ + ( float ( - i + 1 ) - alpha ) * cx[i-2] ) \ / float ( i ) return cx def gen_laguerre_poly_test ( ): #*****************************************************************************80 # ## GEN_LAGUERRE_POLY_TEST tests GEN_LAGUERRE_POLY. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 10 February 2015 # # Author: # # John Burkardt # import numpy as np n = 10 alpha_test = np.array ( ( 0.0, 0.0, 0.1, 0.1, 0.5, 1.0 ) ); x_test = np.array ( ( 0.0, 1.0, 0.0, 0.5, 0.5, 0.5 ) ) print '' print 'GEN_LAGUERRE_POLY_TEST' print ' GEN_LAGUERRE_POLY evaluates the generalized Laguerre polynomial.' for i in range ( 0, 6 ): x = x_test[i] alpha = alpha_test[i] print '' print ' Table of L(N,ALPHA)(X) for' print '' print ' N(max) = %d' % ( n ) print ' ALPHA = %f' % ( alpha ) print ' X = %f' % ( x ) print '' c = gen_laguerre_poly ( n, alpha, x ) for j in range ( 0, n + 1 ): print ' %4d %12f' % ( j, c[j] ) print '' print 'GEN_LAGUERRE_POLY_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) gen_laguerre_poly_test ( ) timestamp ( )