#!/usr/bin/env python # def h_hofstadter ( n ): #*****************************************************************************80 # ## H_HOFSTADTER computes the Hofstadter H sequence. # # Discussion: # # H(N) = 0 if N = 0 # = N - H ( H ( H ( N - 1 ) ), otherwise. # # H(N) is defined for all nonnegative integers. # # Table: # # N H(N) # -- ---- # # 0 0 # 1 1 # 2 1 # 3 2 # 4 3 # 5 4 # 6 4 # 7 5 # 8 5 # 9 6 # 10 7 # 11 7 # 12 8 # 13 9 # 14 10 # 15 10 # 16 11 # 17 12 # 18 13 # 19 13 # 20 14 # 21 14 # 22 15 # 23 16 # 24 17 # 25 17 # 26 18 # 27 18 # 28 19 # 29 20 # 30 20 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 12 February 2015 # # Author: # # John Burkardt # # Reference: # # Douglas Hofstadter, # Goedel, Escher, Bach, # Basic Books, 1979. # # Parameters: # # Input, integer N, the argument of the function. # # Output, integer VALUE, the value of the function. # if ( n <= 0 ): value = 0 else: value = n - h_hofstadter ( h_hofstadter ( h_hofstadter ( n - 1 ) ) ) return value def h_hofstadter_test ( ): #*****************************************************************************80 # ## H_HOFSTADTER_TEST tests H_HOFSTADTER. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 12 February 2015 # # Author: # # John Burkardt # print '' print 'H_HOFSTADTER_TEST' print ' H_HOFSTADTER evaluates Hofstadter\'s recursive G function.' print '' print ' N G(N)' print '' for i in range ( 0, 31 ): value = h_hofstadter ( i ) print ' %6d %6d' % ( i, value ) print '' print 'H_HOFSTADTER_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) h_hofstadter_test ( ) timestamp ( )