#!/usr/bin/env python # def hermite_poly_phys ( n, x ): #*****************************************************************************80 # ## HERMITE_POLY_PHYS evaluates the Hermite polynomials at X. # # Differential equation: # # Y'' - 2 X Y' + 2 N Y = 0 # # First terms: # # 1 # 2 X # 4 X^2 - 2 # 8 X^3 - 12 X # 16 X^4 - 48 X^2 + 12 # 32 X^5 - 160 X^3 + 120 X # 64 X^6 - 480 X^4 + 720 X^2 - 120 # 128 X^7 - 1344 X^5 + 3360 X^3 - 1680 X # 256 X^8 - 3584 X^6 + 13440 X^4 - 13440 X^2 + 1680 # 512 X^9 - 9216 X^7 + 48384 X^5 - 80640 X^3 + 30240 X # 1024 X^10 - 23040 X^8 + 161280 X^6 - 403200 X^4 + 302400 X^2 - 30240 # # Recursion: # # H(0,X) = 1, # H(1,X) = 2*X, # H(N,X) = 2*X * H(N-1,X) - 2*(N-1) * H(N-2,X) # # Norm: # # Integral ( -oo < X < oo ) exp ( - X^2 ) * H(N,X)^2 dX # = sqrt ( pi ) * 2^N * N! # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 July 2004 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Parameters: # # Input, integer N, the highest order polynomial to compute. # Note that polynomials 0 through N will be computed. # # Input, real X, the point at which the polynomials are to be evaluated. # # Output, real CX[0:N], the values of the first N+1 Hermite # polynomials at the point X. # import numpy as np cx = np.zeros ( n + 1 ) cx[0] = 1.0 if ( 0 < n ): cx[1] = 2.0 * x for i in range ( 2, n + 1 ): cx[i] = 2.0 * x * cx[i-1] - 2.0 * ( i - 1 ) * cx[i-2] return cx def hermite_poly_phys_test ( ): #*****************************************************************************80 # ## HERMITE_POLY_PHYS_TEST tests HERMITE_POLY_PHYS. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 12 February 2015 # # Author: # # John Burkardt # from hermite_poly_phys_values import hermite_poly_phys_values print '' print 'HERMITE_POLY_PHYS_TEST' print ' HERMITE_POLY_PHYS computes the Hermite physicist polynomials;' print '' print ' N X Exact F H(N)(X)' print '' n_data = 0 while ( True ): n_data, n, x, fx = hermite_poly_phys_values ( n_data ) if ( n_data == 0 ): break fx2 = hermite_poly_phys ( n, x ) print ' %2d %12f %14g %14g' % ( n, x, fx, fx2[n] ) print '' print 'HERMITE_POLY_PHYS_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) hermite_poly_phys_test ( ) timestamp ( )