#!/usr/bin/env python # def hermite_poly_phys_coef ( n ): #*****************************************************************************80 # ## HERMITE_POLY_PHYS_COEF: coefficients of the physicist's Hermite polynomial H(n,x). # # First terms: # # N/K 0 1 2 3 4 5 6 7 8 9 10 # # 0 1 # 1 0 2 # 2 -2 0 4 # 3 0 -12 0 8 # 4 12 0 -48 0 16 # 5 0 120 0 -160 0 32 # 6 -120 0 720 0 -480 0 64 # 7 0 -1680 0 3360 0 -1344 0 128 # 8 1680 0 -13440 0 13440 0 -3584 0 256 # 9 0 30240 0 -80640 0 48384 0 -9216 0 512 # 10 -30240 0 302400 0 -403200 0 161280 0 -23040 0 1024 # # Recursion: # # H(0,X) = 1, # H(1,X) = 2*X, # H(N,X) = 2*X * H(N-1,X) - 2*(N-1) * H(N-2,X) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 13 February 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Parameters: # # Input, integer N, the highest order polynomial to compute. # Note that polynomials 0 through N will be computed. # # Output, real C(1:N+1,1:N+1), the coefficients of the Hermite # polynomials. # import numpy as np c = np.zeros ( ( n + 1, n + 1 ) ) c[0,0] = 1.0 if ( 0 < n ): c[1,1] = 2.0 for i in range ( 1, n ): c[i+1,0] = -2.0 * float ( i ) * c[i-1,0] for j in range ( 1, i ): c[i+1,j] = 2.0 * c[i,j-1] -2.0 * float ( i ) * c[i-1,j] c[i+1,i ] = 2.0 * c[i , i-1] c[i+1,i+1] = 2.0 * c[i , i ] return c def hermite_poly_phys_coef_test ( ): #*****************************************************************************80 # ## HERMITE_POLY_PHYS_COEF_TEST tests HERMITE_POLY_PHYS_COEF. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 13 February 2015 # # Author: # # John Burkardt # n = 5 print '' print 'HERMITE_POLY_PHYS_COEF_TEST' print ' HERMITE_POLY_PHYS_COEF determines the Hermite' print ' physicist\'s polynomial coefficients.' c = hermite_poly_phys_coef ( n ) for i in range ( 0, n + 1 ): print '' print ' H(%d)' % ( i ) print '' for j in range ( i, -1, -1 ): if ( j == 0 ): print ' %f' % ( c[i,j] ) elif ( j == 1 ): print ' %f * x' % ( c[i,j] ) else: print ' %f * x^%d' % ( c[i,j], j ) print '' print 'HERMITE_POLY_PHYS_COEF_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) hermite_poly_phys_coef_test ( ) timestamp ( )