#!/usr/bin/env python # def hermite_poly_phys_values ( n_data ): #*****************************************************************************80 # ## HERMITE_POLY_PHYS_VALUES returns some values of the physicist's Hermite polynomial. # # Discussion: # # In Mathematica, the function can be evaluated by: # # HermiteH[n,x] # # Differential equation: # # Y'' - 2 X Y' + 2 N Y = 0 # # First terms: # # 1 # 2 X # 4 X^2 - 2 # 8 X^3 - 12 X # 16 X^4 - 48 X^2 + 12 # 32 X^5 - 160 X^3 + 120 X # 64 X^6 - 480 X^4 + 720 X^2 - 120 # 128 X^7 - 1344 X^5 + 3360 X^3 - 1680 X # 256 X^8 - 3584 X^6 + 13440 X^4 - 13440 X^2 + 1680 # 512 X^9 - 9216 X^7 + 48384 X^5 - 80640 X^3 + 30240 X # 1024 X^10 - 23040 X^8 + 161280 X^6 - 403200 X^4 + 302400 X^2 - 30240 # # Recursion: # # H(0,X) = 1, # H(1,X) = 2*X, # H(N,X) = 2*X * H(N-1,X) - 2*(N-1) * H(N-2,X) # # Norm: # # Integral ( -oo < X < +oo ) exp ( - X^2 ) * H(N,X)^2 dX # = sqrt ( PI ) * 2^N * N! # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 12 February 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, integer N, the order of the polynomial. # # Output, real X, the point where the polynomial is evaluated. # # Output, real FX, the value of the function. # import numpy as np n_max = 18 f_vec = np.array ( ( \ 0.1000000000000000E+01, \ 0.1000000000000000E+02, \ 0.9800000000000000E+02, \ 0.9400000000000000E+03, \ 0.8812000000000000E+04, \ 0.8060000000000000E+05, \ 0.7178800000000000E+06, \ 0.6211600000000000E+07, \ 0.5206568000000000E+08, \ 0.4212712000000000E+09, \ 0.3275529760000000E+10, \ 0.2432987360000000E+11, \ 0.1712370812800000E+12, \ 0.0000000000000000E+00, \ 0.4100000000000000E+02, \ -0.8000000000000000E+01, \ 0.3816000000000000E+04, \ 0.3041200000000000E+07 )) n_vec = np.array ( ( \ 0, 1, 2, \ 3, 4, 5, \ 6, 7, 8, \ 9, 10, 11, \ 12, 5, 5, \ 5, 5, 5 )) x_vec = np.array ( ( \ 5.0E+00, \ 5.0E+00, \ 5.0E+00, \ 5.0E+00, \ 5.0E+00, \ 5.0E+00, \ 5.0E+00, \ 5.0E+00, \ 5.0E+00, \ 5.0E+00, \ 5.0E+00, \ 5.0E+00, \ 5.0E+00, \ 0.0E+00, \ 0.5E+00, \ 1.0E+00, \ 3.0E+00, \ 1.0E+01 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 n = 0 x = 0.0 f = 0.0 else: n = n_vec[n_data] x = x_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, n, x, f def hermite_poly_phys_values_test ( ): #*****************************************************************************80 # ## HERMITE_POLY_PHYS_VALUES_TEST demonstrates the use of HERMITE_POLY_PHYS_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 12 February 2015 # # Author: # # John Burkardt # print '' print 'HERMITE_POLY_PHYS_VALUES_TEST:' print ' HERMITE_POLY_PHYS_VALUES stores values of the Hermite physicist polynomials.' print '' print ' N X FX' print '' n_data = 0 while ( True ): n_data, n, x, fx = hermite_poly_phys_values ( n_data ) if ( n_data == 0 ): break print ' %6d %12f %24.16g' % ( n, x, fx ) print '' print 'HERMITE_POLY_PHYS_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) hermite_poly_phys_values_test ( ) timestamp ( )