#!/usr/bin/env python def i4_is_triangular ( i ) : #*****************************************************************************80 # ## I4_IS_TRIANGULAR determines whether an integer is triangular. # # Discussion: # # The N-th triangular number is equal to the sum of the first # N integers. # # First Values: # # Index Value # 0 0 # 1 1 # 2 3 # 3 6 # 4 10 # 5 15 # 6 21 # 7 28 # 8 36 # 9 45 # 10 55 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 07 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer I, the integer to be checked. # # Output, boolean VALUE, is TRUE if I is triangular. # from i4_to_triangle import i4_to_triangle if ( i < 0 ): value = False elif ( i == 0 ): value = True else: j, k = i4_to_triangle ( i ) if ( j == k ): value = True else: value = False return value def i4_is_triangular_test ( ) : #*****************************************************************************80 # ## I4_IS_TRIANGULAR_TEST tests I4_IS_TRIANGULAR. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 07 February 2015 # # Author: # # John Burkardt # print '' print 'I4_IS_TRIANGULAR_TEST' print ' I4_IS_TRIANGULAR reports whether an I4 is prime.' print ' ' print ' I I4_IS_TRIANGULAR(I)' print ' ' for i in range ( 0, 21 ): j = i4_is_triangular ( i ) print ' %8d %r' % ( i, j ) print '' print 'I4_IS_TRIANGULAR_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) i4_is_triangular_test ( ) timestamp ( )