#!/usr/bin/env python # def jacobi_poly ( n, alpha, beta, x ): #*****************************************************************************80 # ## JACOBI_POLY evaluates the Jacobi polynomials at X. # # Differential equation: # # (1-X*X) Y'' + (BETA-ALPHA-(ALPHA+BETA+2) X) Y' + N (N+ALPHA+BETA+1) Y = 0 # # Recursion: # # P(0,ALPHA,BETA,X) = 1, # # P(1,ALPHA,BETA,X) = ( (2+ALPHA+BETA)*X + (ALPHA-BETA) ) / 2 # # P(N,ALPHA,BETA,X) = # ( # (2*N+ALPHA+BETA-1) # * ((ALPHA**2-BETA**2)+(2*N+ALPHA+BETA)*(2*N+ALPHA+BETA-2)*X) # * P(N-1,ALPHA,BETA,X) # -2*(N-1+ALPHA)*(N-1+BETA)*(2*N+ALPHA+BETA) * P(N-2,ALPHA,BETA,X) # ) / 2*N*(N+ALPHA+BETA)*(2*N-2+ALPHA+BETA) # # Restrictions: # # -1 < ALPHA # -1 < BETA # # Norm: # # Integral ( -1 <= X <= 1 ) ( 1 - X )**ALPHA * ( 1 + X )**BETA # * P(N,ALPHA,BETA,X)**2 dX # = 2**(ALPHA+BETA+1) * Gamma ( N + ALPHA + 1 ) * Gamma ( N + BETA + 1 ) / # ( 2 * N + ALPHA + BETA ) * N! * Gamma ( N + ALPHA + BETA + 1 ) # # Special values: # # P(N,ALPHA,BETA)(1) = (N+ALPHA)!/(N!*ALPHA!) for integer ALPHA. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 February 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Parameters: # # Input, integer N, the highest order polynomial to compute. Note # that polynomials 0 through N will be computed. # # Input, real ALPHA, one of the parameters defining the Jacobi # polynomials, ALPHA must be greater than -1. # # Input, real BETA, the second parameter defining the Jacobi # polynomials, BETA must be greater than -1. # # Input, real X, the point at which the polynomials are to be evaluated. # # Output, real CX(1:N+1), the values of the first N+1 Jacobi # polynomials at the point X. # import numpy as np from sys import exit if ( alpha <= -1.0 ): print '' print 'JACOBI_POLY - Fatal error!' print ' Illegal input value of ALPHA = %f' % ( alpha ) print ' But ALPHA must be greater than -1.' exit ( 'JACOBI_POLY - Fatal error!' ) if ( beta <= -1.0 ): print '' print 'JACOBI_POLY - Fatal error!' print ' Illegal input value of BETA = %f' % ( beta ) print ' But BETA must be greater than -1.' exit ( 'JACOBI_POLY - Fatal error!' ) cx = np.zeros ( n + 1 ); cx[0] = 1.0 if ( 0 < n ): cx[1] = ( 1.0 + 0.5 * ( alpha + beta ) ) * x + 0.5 * ( alpha - beta ); for i in range ( 2, n + 1 ): c1 = 2 * i * ( i + alpha + beta ) * ( 2 * i - 2 + alpha + beta ) c2 = ( 2 * i - 1 + alpha + beta ) * ( 2 * i + alpha + beta ) \ * ( 2 * i - 2 + alpha + beta ) c3 = ( 2 * i - 1 + alpha + beta ) * ( alpha + beta ) * ( alpha - beta ) c4 = - 2 * ( i - 1 + alpha ) * ( i - 1 + beta ) * ( 2 * i + alpha + beta ) cx[i] = ( ( c3 + c2 * x ) * cx[i-1] + c4 * cx[i-2] ) / c1 return cx def jacobi_poly_test ( ): #*****************************************************************************80 # ## JACOBI_POLY_TEST tests JACOBI_POLY. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 February 2015 # # Author: # # John Burkardt # import numpy as np from jacobi_poly_values import jacobi_poly_values print '' print 'JACOBI_POLY_TEST' print ' JACOBI_POLY computes values of the Jacobi polynomial.' print '' print ' N A B X GPV JACOBI' print '' n_data = 0 while ( True ): [ n_data, n, a, b, x, fx ] = jacobi_poly_values ( n_data ) if ( n_data == 0 ): break c = jacobi_poly ( n, a, b, x ) fx2 = c[n]; print ' %6d %8g %8g %8g %12g %12g' % ( n, a, b, x, fx, fx2 ) print '' print 'JACOBI_POLY_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) jacobi_poly_test ( ) timestamp ( )