#!/usr/bin/env python # def jacobi_symbol ( q, p ): #*****************************************************************************80 # ## JACOBI_SYMBOL evaluates the Jacobi symbol (Q/P). # # Definition: # # If P is prime, then # # Jacobi Symbol (Q/P) = Legendre Symbol (Q/P) # # Else # # let P have the prime factorization # # P = Product ( 1 <= I <= N ) P(I)^E(I) # # Jacobi Symbol (Q/P) = # # Product ( 1 <= I <= N ) Legendre Symbol (Q/P(I))^E(I) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 February 2015 # # Author: # # John Burkardt # # Reference: # # Daniel Zwillinger, # CRC Standard Mathematical Tables and Formulae, # 30th Edition, # CRC Press, 1996, pages 86-87. # # Parameters: # # Input, integer Q, an integer whose Jacobi symbol with # respect to P is desired. # # Input, integer P, the number with respect to which the Jacobi # symbol of Q is desired. P should be 2 or greater. # # Output, integer J, the Jacobi symbol (Q/P). # Ordinarily, J will be -1, 0 or 1. # -2, not enough factorization space. # -3, an error during Legendre symbol calculation. # from i4_factor import i4_factor from legendre_symbol import legendre_symbol # # P must be greater than 1. # if ( p <= 1 ): print '' print 'JACOBI_SYMBOL - Fatal error!' print ' P must be greater than 1.' j = -2 return l # # Decompose P into factors of prime powers. # nfactor, factor, power, nleft = i4_factor ( p ) if ( nleft != 1 ): print '' print 'JACOBI_SYMBOL - Fatal error!' print ' Not enough factorization space.' j = -2 return j # # Force Q to be nonnegative. # qq = q while ( qq < 0 ): qq = qq + p # # For each prime factor, compute the Legendre symbol, and # multiply the Jacobi symbol by the appropriate factor. # j = 1 for i in range ( 0, nfactor ): pp = factor[i] l = legendre_symbol ( qq, pp ) if ( l < -1 ): print '' print 'JACOBI_SYMBOL - Fatal error!' print ' Error during Legendre symbol calculation.' j = -3 j = j * l ** power[i] return j def jacobi_symbol_test ( ): #*****************************************************************************80 # ## JACOBI_SYMBOL_TEST_TEST tests JACOBI_SYMBOL_TEST. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 February 2015 # # Author: # # John Burkardt # import numpy as np ntest = 4; ptest = [ 3, 9, 10, 12 ]; print '' print 'JACOBI_SYMBOL_TEST' print ' JACOBI_SYMBOL computes the Jacobi symbol' print ' (Q/P) which records whether Q is' print ' a quadratic residue modulo the number P.' for i in range ( 0, ntest ): p = ptest[i] print '' print ' Jacobi Symbols for P = %d' % ( p ) print '' for q in range ( 0, p + 1 ): l = jacobi_symbol ( q, p ) print ' %6d %6d %6d' % ( p, q, l ) print '' print 'JACOBI_SYMBOL_TEST_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) jacobi_symbol_test ( ) timestamp ( )