#!/usr/bin/env python # def krawtchouk ( n, p, x, m ): #*****************************************************************************80 # ## KRAWTCHOUK evaluates the Krawtchouk polynomials at X. # # Discussion: # # The polynomial has a parameter P, which must be strictly between # 0 and 1, and a parameter M which must be a nonnegative integer. # # The Krawtchouk polynomial of order N, with parameters P and M, # evaluated at X, may be written K(N,P,X,M). # # The first two terms are: # # K(0,P,X,M) = 1 # K(1,P,X,M) = X - P * M # # and the recursion, for fixed P and M is # # ( N + 1 ) * K(N+1,P,X,M) = # ( X - ( N + P * ( M - 2 * N))) * K(N, P,X,M) # - ( M - N + 1 ) * P * ( 1 - P ) * K(N-1,P,X,M) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 February 2015 # # Author: # # John Burkardt # # Reference: # # Walter Gautschi, # Orthogonal Polynomials: Computation and Approximation, # Oxford, 2004, # ISBN: 0-19-850672-4, # LC: QA404.5 G3555. # # Parameters: # # Input, integer N, the highest order polynomial to evaluate. # 0 <= N. # # Input, real P, the parameter. 0 < P < 1. # # Input, real X, the evaluation parameter. # # Input, integer M, the parameter. 0 <= M. # # Output, real V[0:N], the values of the Krawtchouk polynomials # of orders 0 through N at X. # import numpy as np v = [] if ( n < 0 ): print '' print 'KRAWTCHOUK - Fatal error!' print ' 0 <= N is required.' return v if ( p <= 0.0 or 1.0 <= p ): print '' print 'KRAWTCHOUK - Fatal error!' print ' 0 < P < 1 is required.' return v if ( m < 0 ): print '' print 'KRAWTCHOUK - Fatal error!' print ' 0 <= M is required.' return v v = np.zeros ( n + 1 ) v[0] = 1.0 if ( 1 <= n ): v[1] = x - p * m for i in range ( 1, n ): v[i+1] = ( ( x - float ( i + p * ( m - 2 * i ) ) ) * v[i] \ - float ( ( m - i + 1 ) * p * ( 1 - p ) ) * v[i-1] ) \ / float ( i + 1 ) return v def krawtchouk_test ( ): #*****************************************************************************80 # ## KRAWTCHOUK_TEST tests KRAWTCHOUK. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 February 2015 # # Author: # # John Burkardt # import numpy as np test_num = 2 p_test = np.array ( ( 0.25, 0.5 ) ) m = 5 print '' print 'KRAWTCHOUK_TEST' print ' KRAWTCHOUK computes Krawtchouk polynomials;' print '' print ' N P X M K(N,P,X,M)' for test in range ( 0, test_num ): n = 5 p = p_test[test] print '' for j in range ( 0, 6 ): x = float ( j ) / 2.0 value = krawtchouk ( n, p, x, m ) print '' for i in range ( 0, n + 1 ): print ' %8d %8f %8f %8d %14f' % ( i, p, x, m, value[i] ) print '' print 'KRAWTCHOUK_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) krawtchouk_test ( ) timestamp ( )