#!/usr/bin/env python # def laguerre_associated ( n, m, x ): #*****************************************************************************80 # ## LAGUERRE_ASSOCIATED evaluates the associated Laguerre polynomials L(N,M)(X) at X. # # Differential equation: # # X Y'' + (M+1-X) Y' + (N-M) Y = 0 # # First terms: # # M = 0 # # L(0,0)(X) = 1 # L(1,0)(X) = -X + 1 # L(2,0)(X) = X^2 - 4 X + 2 # L(3,0)(X) = -X^3 + 9 X^2 - 18 X + 6 # L(4,0)(X) = X^4 - 16 X^3 + 72 X^2 - 96 X + 24 # L(5,0)(X) = -X^5 + 25 X^4 - 200 X^3 + 600 X^2 - 600 x + 120 # L(6,0)(X) = X^6 - 36 X^5 + 450 X^4 - 2400 X^3 + 5400 X^2 - 4320 X + 720 # # M = 1 # # L(0,1)(X) = 0 # L(1,1)(X) = -1, # L(2,1)(X) = 2 X - 4, # L(3,1)(X) = -3 X^2 + 18 X - 18, # L(4,1)(X) = 4 X^3 - 48 X^2 + 144 X - 96 # # M = 2 # # L(0,2)(X) = 0 # L(1,2)(X) = 0, # L(2,2)(X) = 2, # L(3,2)(X) = -6 X + 18, # L(4,2)(X) = 12 X^2 - 96 X + 144 # # M = 3 # # L(0,3)(X) = 0 # L(1,3)(X) = 0, # L(2,3)(X) = 0, # L(3,3)(X) = -6, # L(4,3)(X) = 24 X - 96 # # M = 4 # # L(0,4)(X) = 0 # L(1,4)(X) = 0 # L(2,4)(X) = 0 # L(3,4)(X) = 0 # L(4,4)(X) = 24 # # Recursion: # # if N = 0: # # L(N,M)(X) = 0 # # if N = 1: # # L(N,M)(X) = (M+1-X) # # if 2 <= N: # # L(N,M)(X) = ( (M+2*N-1-X) * L(N-1,M)(X) # + (1-M-N) * L(N-2,M)(X) ) / N # # Special values: # # For M = 0, the associated Laguerre polynomials L(N,M)(X) are equal # to the Laguerre polynomials L(N)(X). # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 February 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Parameters: # # Input, integer N, the highest order polynomial to compute. # Note that polynomials 0 through N will be computed. # # Input, integer M, the parameter. M must be nonnegative. # # Input, real X, the point at which the polynomials are to be evaluated. # # Output, real CX(1:N+1), the associated Laguerre polynomials of # degrees 0 through N evaluated at the point X. # import numpy as np from sys import exit if ( m < 0 ): print '' print 'LAGUERRE_ASSOCIATED - Fatal error!' print ' Input value of M = %d' % ( m ) print ' but M must be nonnegative.' exit ( 'LAGUERRE_ASSOCIATED - Fatal error!' ) cx = np.zeros ( n + 1 ) cx[0] = 1.0 if ( 0 < n ): cx[1] = float ( m + 1 ) - x for i in range ( 2, n + 1 ): cx[i] = ( ( float ( m + 2 * i - 1 ) - x ) * cx[i-1] \ + float ( - m - i + 1 ) * cx[i-2] ) \ / float ( i ) return cx def laguerre_associated_test ( ): #*****************************************************************************80 # ## LAGUERRE_ASSOCIATED_TEST tests LAGUERRE_ASSOCIATED. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 February 2015 # # Author: # # John Burkardt # import numpy as np n = 6 m_test = np.array ( [ 0, 0, 1, 2, 3, 1 ] ) x_test = np.array ( [ 0.0, 1.0, 0.0, 0.5, 0.5, 0.5 ] ) print '' print 'LAGUERRE_ASSOCIATED_TEST' print ' LAGUERRE_ASSOCIATED evaluates the associated Laguerre polynomials;' for i in range ( 0, 6 ): m = m_test[i] x = x_test[i] print '' print ' Table of L(N,M)(X) for' print '' print ' N(max) = %d' % ( n ) print ' M = %d' % ( m ) print ' X = %f' % ( x ) print '' c = laguerre_associated ( n, m, x ) for j in range ( 0, n + 1 ): print ' %4d %12g' % ( j, c[j] ) print '' print 'LAGUERRE_ASSOCIATED_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) laguerre_associated_test ( ) timestamp ( )