#!/usr/bin/env python # def laguerre_poly ( n, x ): #*****************************************************************************80 # ## LAGUERRE_POLY evaluates the Laguerre polynomials at X. # # Differential equation: # # X * Y'' + (1-X) * Y' + N * Y = 0 # # First terms: # # 1 # -X + 1 # ( X^2 - 4 X + 2 ) / 2 # ( -X^3 + 9 X^2 - 18 X + 6 ) / 6 # ( X^4 - 16 X^3 + 72 X^2 - 96 X + 24 ) / 24 # ( -X^5 + 25 X^4 - 200 X^3 + 600 X^2 - 600 x + 120 ) / 120 # ( X^6 - 36 X^5 + 450 X^4 - 2400 X^3 + 5400 X^2 - 4320 X + 720 ) / 720 # ( -X^7 + 49 X^6 - 882 X^5 + 7350 X^4 - 29400 X^3 # + 52920 X^2 - 35280 X + 5040 ) / 5040 # # Recursion: # # L(0)(X) = 1, # L(1)(X) = 1-X, # N * L(N)(X) = (2*N-1-X) * L(N-1)(X) - (N-1) * L(N-2)(X) # # Orthogonality: # # Integral ( 0 <= X < Infinity ) exp ( - X ) * L(N)(X) * L(M)(X) dX # = 0 if N /= M # = 1 if N == M # # Special values: # # L(N)(0) = 1. # # Relations: # # L(N)(X) = (-1)^N / N! * exp ( x ) * (d/dx)^n ( exp ( - x ) * X^n ) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 July 2004 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Parameters: # # Input, integer N, the highest order polynomial to compute. # Note that polynomials 0 through N will be computed. # # Input, real X, the point at which the polynomials are to be evaluated. # # Output, real CX(1:N+1), the Laguerre polynomials of degree 0 through # N evaluated at the point X. # import numpy as np cx = np.zeros ( n + 1 ) cx[0] = 1.0 if ( 0 < n ): cx[1] = 1.0 - x for i in range ( 2, n + 1 ): cx[i] = ( ( float ( 2 * i - 1 ) - x ) * cx[i-1] \ - float ( i - 1 ) * cx[i-2] ) \ / float ( i ) return cx def laguerre_poly_test ( ): #*****************************************************************************80 # ## LAGUERRE_POLY_TEST tests LAGUERRE_POLY. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 February 2015 # # Author: # # John Burkardt # from laguerre_polynomial_values import laguerre_polynomial_values print '' print 'LAGUERRE_POLY_TEST' print ' LAGUERRE_POLY computes Laguerre polynomials;' print '' print ' N X Exact F L(N)(X)' print '' n_data = 0 while ( True ): n_data, n, x, f = laguerre_polynomial_values ( n_data ) if ( n_data == 0 ): break f2 = laguerre_poly ( n, x ) print ' %6d %6f %12f %12f' % ( n, x, f, f2[n] ) print '' print 'LAGUERRE_POLY_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) laguerre_poly_test ( ) timestamp ( )