#!/usr/bin/env python # def laguerre_poly_coef ( n ): #*****************************************************************************80 # ## LAGUERRE_POLY_COEF evaluates the Laguerre polynomial coefficients. # # First terms: # # 0: 1 # 1: 1 -1 # 2: 1 -2 1/2 # 3: 1 -3 3/2 1/6 # 4: 1 -4 4 -2/3 1/24 # 5: 1 -5 5 -5/3 5/24 -1/120 # # Recursion: # # L(0) = ( 1, 0, 0, ..., 0 ) # L(1) = ( 1, -1, 0, ..., 0 ) # L(N) = (2*N-1-X) * L(N-1) - (N-1) * L(N-2) / N # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 28 July 2004 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Parameters: # # Input, integer N, the highest order polynomial to compute. # Note that polynomials 0 through N will be computed. # # Output, real C(1:N+1,1:N+1), the coefficients of the Laguerre polynomials # of degree 0 through N. Each polynomial is stored as a row. # import numpy as np c = np.zeros ( ( n + 1, n + 1 ) ) for i in range ( 0, n + 1 ): c[i,0] = 1.0 if ( 0 < n ): c[1,1] = -1.0 for i in range ( 2, n + 1 ): for j in range ( 1, n + 1 ): c[i,j] = ( \ float ( 2 * i - 1 ) * c[i-1,j] \ + float ( - i + 1 ) * c[i-2,j] \ - c[i-1,j-1] ) / float ( i ) return c def laguerre_poly_coef_test ( ): #*****************************************************************************80 # ## LAGUERRE_POLY_COEF_TEST tests LAGUERRE_POLY_COEF. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 February 2015 # # Author: # # John Burkardt # n = 5 print '' print 'LAGUERRE_POLY_COEF_TEST' print ' LAGUERRE_POLY_COEF determines the Laguerre' print ' polynomial coefficients.' c = laguerre_poly_coef ( n ) for i in range ( 0, n + 1 ): print '' print ' L(%d)' % ( i ) print '' for j in range ( i, -1, -1 ): if ( j == 0 ): print ' %f' % ( c[i,j] ) elif ( j == 1 ): print ' %f * x' % ( c[i,j] ) else: print ' %f * x^%d' % ( c[i,j], j ) fact = 1.0 for i in range ( 0, n + 1 ): if ( 0 < i ): fact = fact * i print '' print ' Factorially scaled L(%d)' % ( i ) print '' for j in range ( i, -1, -1 ): if ( j == 0 ): print ' %f' % ( fact * c[i,j] ) elif ( j == 1 ): print ' %f * x' % ( fact * c[i,j] ) else: print ' %f * x^%d' % ( fact * c[i,j], j ) print '' print 'LAGUERRE_POLY_COEF_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) laguerre_poly_coef_test ( ) timestamp ( )