#!/usr/bin/env python # def legendre_associated ( n, m, x ): #*****************************************************************************80 # ## LEGENDRE_ASSOCIATED evaluates the associated Legendre functions. # # Differential equation: # # (1-X*X) * Y'' - 2 * X * Y + ( N (N+1) - (M*M/(1-X*X)) * Y = 0 # # First terms: # # M = 0 ( = Legendre polynomials of first kind P(N)(X) ) # # P00 = 1 # P10 = 1 X # P20 = ( 3 X^2 - 1)/2 # P30 = ( 5 X^3 - 3 X)/2 # P40 = ( 35 X^4 - 30 X^2 + 3)/8 # P50 = ( 63 X^5 - 70 X^3 + 15 X)/8 # P60 = (231 X^6 - 315 X^4 + 105 X^2 - 5)/16 # P70 = (429 X^7 - 693 X^5 + 315 X^3 - 35 X)/16 # # M = 1 # # P01 = 0 # P11 = 1 * SQRT(1-X*X) # P21 = 3 * SQRT(1-X*X) * X # P31 = 1.5 * SQRT(1-X*X) * (5*X*X-1) # P41 = 2.5 * SQRT(1-X*X) * (7*X*X*X-3*X) # # M = 2 # # P02 = 0 # P12 = 0 # P22 = 3 * (1-X*X) # P32 = 15 * (1-X*X) * X # P42 = 7.5 * (1-X*X) * (7*X*X-1) # # M = 3 # # P03 = 0 # P13 = 0 # P23 = 0 # P33 = 15 * (1-X*X)^1.5 # P43 = 105 * (1-X*X)^1.5 * X # # M = 4 # # P04 = 0 # P14 = 0 # P24 = 0 # P34 = 0 # P44 = 105 * (1-X*X)^2 # # Recursion: # # if N < M: # P(N,M) = 0 # if N = M: # P(N,M) = (2*M-1)!! * (1-X*X)^(M/2) where N!! means the product of # all the odd integers less than or equal to N. # if N = M+1: # P(N,M) = X*(2*M+1)*P(M,M) # if M+1 < N: # P(N,M) = ( X*(2*N-1)*P(N-1,M) - (N+M-1)*P(N-2,M) )/(N-M) # # Restrictions: # # -1 <= X <= 1 # 0 <= M <= N # # Special values: # # P(N,0)(X) = P(N)(X), that is, for M=0, the associated Legendre # function of the first kind equals the Legendre polynomial of the # first kind. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 February 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Parameters: # # Input, integer N, the maximum first index of the Legendre # function, which must be at least 0. # # Input, integer M, the second index of the Legendre function, # which must be at least 0, and no greater than N. # # Input, real X, the point at which the function is to be # evaluated. X must satisfy -1 <= X <= 1. # # Output, real CX(1:N+1), the values of the first N+1 function. # import numpy as np if ( m < 0 ): print '' print 'LEGENDRE_ASSOCIATED - Fatal error!' print ' Input value of M is %d' % ( m ) print ' but M must be nonnegative.' if ( n < m ): print '' print 'LEGENDRE_ASSOCIATED - Fatal error!' print ' Input value of M = %d' % ( m ) print ' Input value of N = %d' % ( n ) print ' but M must be less than or equal to N.' if ( x < -1.0 ): print '' print 'LEGENDRE_ASSOCIATED - Fatal error!' print ' Input value of X = %f' % ( x ) print ' but X must be no less than -1.' if ( 1.0 < x ): print '' print 'LEGENDRE_ASSOCIATED - Fatal error!' print ' Input value of X = %f' % ( x ) print ' but X must be no more than 1.' cx = np.zeros ( n + 1 ) cx[m] = 1.0 somx2 = np.sqrt ( 1.0 - x * x ) fact = 1.0 for i in range ( 0, m ): cx[m] = - cx[m] * fact * somx2 fact = fact + 2.0 if ( m != n ): cx[m+1] = x * float ( 2 * m + 1 ) * cx[m] for i in range ( m + 2, n + 1 ): cx[i] = ( float ( 2 * i - 1 ) * x * cx[i-1] \ + float ( - i - m + 1 ) * cx[i-2] ) \ / float ( i - m ) return cx def legendre_associated_test ( ): #*****************************************************************************80 # ## LEGENDRE_ASSOCIATED_TEST tests LEGENDRE_ASSOCIATED. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 February 2015 # # Author: # # John Burkardt # import numpy as np from legendre_associated_values import legendre_associated_values print '' print 'LEGENDRE_ASSOCIATED_TEST' print ' LEGENDRE_ASSOCIATED evaluates the associated Legendre functions;' print '' print ' N M X Exact F PNM(X)' print '' n_data = 0 while ( True ): n_data, n, m, x, f = legendre_associated_values ( n_data ) if ( n_data == 0 ): break f2 = legendre_associated ( n, m, x ) print ' %6d %6d %6f %12f %12f' % ( n, m, x, f, f2[n] ) print '' print 'LEGENDRE_ASSOCIATED_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) legendre_associated_test ( ) timestamp ( )