#!/usr/bin/env python # def legendre_associated_normalized ( n, m, x ): #*****************************************************************************80 # ## LEGENDRE_ASSOCIATED_NORMALIZED evaluates the associated Legendre functions. # # Discussion: # # The unnormalized associated Legendre functions P_N^M(X) have # the property that # # Integral ( -1 <= X <= 1 ) ( P_N^M(X) )^2 dX # = 2 * ( N + M )! / ( ( 2 * N + 1 ) * ( N - M )! ) # # By dividing the function by the square root of this term, # the normalized associated Legendre functions have norm 1. # # However, we plan to use these functions to build spherical # harmonics, so we use a slightly different normalization factor of # # sqrt ( ( ( 2 * N + 1 ) * ( N - M )! ) / ( 4 * pi * ( N + M )! ) ) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 20 February 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Parameters: # # Input, integer N, the maximum first index of the Legendre # function, which must be at least 0. # # Input, integer M, the second index of the Legendre function, # which must be at least 0, and no greater than N. # # Input, real X, the point at which the function is to be # evaluated. X must satisfy -1 <= X <= 1. # # Output, real CX(1:N+1), the values of the first N+1 function. # import numpy as np from r8_factorial import r8_factorial if ( m < 0 ): print '' print 'LEGENDRE_ASSOCIATED_NORMALIZED - Fatal error!' print ' Input value of M is %d' % ( m ) print ' but M must be nonnegative.' if ( n < m ): print '' print 'LEGENDRE_ASSOCIATED_NORMALIZED - Fatal error!' print ' Input value of M = %d' % ( m ) print ' Input value of N = %d' % ( n ) print ' but M must be less than or equal to N.' if ( x < -1.0 ): print '' print 'LEGENDRE_ASSOCIATED_NORMALIZED - Fatal error!' print ' Input value of X = %f' % ( x ) print ' but X must be no less than -1.' if ( 1.0 < x ): print '' print 'LEGENDRE_ASSOCIATED_NORMALIZED - Fatal error!' print ' Input value of X = %f' % ( x ) print ' but X must be no more than 1.' cx = np.zeros ( n + 1 ) cx[m] = 1.0 somx2 = np.sqrt ( 1.0 - x * x ) fact = 1.0 for i in range ( 0, m ): cx[m] = - cx[m] * fact * somx2 fact = fact + 2.0 if ( m != n ): cx[m+1] = x * float ( 2 * m + 1 ) * cx[m] for i in range ( m + 2, n + 1 ): cx[i] = ( float ( 2 * i - 1 ) * x * cx[i-1] \ + float ( - i - m + 1 ) * cx[i-2] ) \ / float ( i - m ) # # Normalization. # for mm in range ( m, n + 1 ): factor = np.sqrt ( ( ( 2 * mm + 1 ) * r8_factorial ( mm - m ) ) \ / ( 4.0 * np.pi * r8_factorial ( mm + m ) ) ) cx[mm] = cx[mm] * factor return cx def legendre_associated_normalized_test ( ): #*****************************************************************************80 # ## LEGENDRE_ASSOCIATED_NORMALIZED_TEST tests LEGENDRE_ASSOCIATED_NORMALIZED. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 20 February 2015 # # Author: # # John Burkardt # import numpy as np from legendre_associated_normalized_sphere_values import legendre_associated_normalized_sphere_values print '' print 'LEGENDRE_ASSOCIATED_NORMALIZED_TEST' print ' LEGENDRE_ASSOCIATED_NORMALIZED evaluates the associated Legendre functions;' print '' print ' N M X Exact F PNM(X)' print '' n_data = 0 while ( True ): n_data, n, m, x, f = legendre_associated_normalized_sphere_values ( n_data ) if ( n_data == 0 ): break f2 = legendre_associated_normalized ( n, m, x ) print ' %6d %6d %6f %12f %12f' % ( n, m, x, f, f2[n] ) print '' print 'LEGENDRE_ASSOCIATED_NORMALIZED_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) legendre_associated_normalized_test ( ) timestamp ( )