#!/usr/bin/env python # def legendre_associated_values ( n_data ): #*****************************************************************************80 # ## LEGENDRE_ASSOCIATED_VALUES returns values of associated Legendre functions. # # Discussion: # # The function considered is the associated Legendre polynomial P^M_N(X). # # In Mathematica, the function can be evaluated by: # # LegendreP [ n, m, x ] # # Differential equation: # # (1-X*X) * Y'' - 2 * X * Y + ( N (N+1) - (M*M/(1-X*X)) * Y = 0 # # First terms: # # M = 0 ( = Legendre polynomials of first kind P(N)(X) ) # # P00 = 1 # P10 = 1 X # P20 = ( 3 X^2 - 1)/2 # P30 = ( 5 X^3 - 3 X)/2 # P40 = ( 35 X^4 - 30 X^2 + 3)/8 # P50 = ( 63 X^5 - 70 X^3 + 15 X)/8 # P60 = (231 X^6 - 315 X^4 + 105 X^2 - 5)/16 # P70 = (429 X^7 - 693 X^5 + 315 X^3 - 35 X)/16 # # M = 1 # # P01 = 0 # P11 = 1 * SQRT(1-X*X) # P21 = 3 * SQRT(1-X*X) * X # P31 = 1.5 * SQRT(1-X*X) * (5*X*X-1) # P41 = 2.5 * SQRT(1-X*X) * (7*X*X*X-3*X) # # M = 2 # # P02 = 0 # P12 = 0 # P22 = 3 * (1-X*X) # P32 = 15 * (1-X*X) * X # P42 = 7.5 * (1-X*X) * (7*X*X-1) # # M = 3 # # P03 = 0 # P13 = 0 # P23 = 0 # P33 = 15 * (1-X*X)**1.5 # P43 = 105 * (1-X*X)**1.5 * X # # M = 4 # # P04 = 0 # P14 = 0 # P24 = 0 # P34 = 0 # P44 = 105 * (1-X*X)**2 # # Recursion: # # if N < M: # P(N,M) = 0 # if N = M: # P(N,M) = (2*M-1)!! * (1-X*X)**(M/2) where N!! means the product of # all the odd integers less than or equal to N. # if N = M+1: # P(N,M) = X*(2*M+1)*P(M,M) # if M+1 < N: # P(N,M) = ( X*(2*N-1)*P(N-1,M) - (N+M-1)*P(N-2,M) )/(N-M) # # Restrictions: # # -1 <= X <= 1 # 0 <= M <= N # # Special values: # # P(N,0)(X) = P(N)(X), that is, for M=0, the associated Legendre # polynomial of the first kind equals the Legendre polynomial of the # first kind. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 February 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, integer N, integer M, real X, # the arguments of the function. # # Output, real F, the value of the function. # import numpy as np n_max = 20 f_vec = np.array ( ( \ 0.0000000000000000E+00, \ -0.5000000000000000E+00, \ 0.0000000000000000E+00, \ 0.3750000000000000E+00, \ 0.0000000000000000E+00, \ -0.8660254037844386E+00, \ -0.1299038105676658E+01, \ -0.3247595264191645E+00, \ 0.1353164693413185E+01, \ -0.2800000000000000E+00, \ 0.1175755076535925E+01, \ 0.2880000000000000E+01, \ -0.1410906091843111E+02, \ -0.3955078125000000E+01, \ -0.9997558593750000E+01, \ 0.8265311444100484E+02, \ 0.2024442836815152E+02, \ -0.4237997531890869E+03, \ 0.1638320624828339E+04, \ -0.2025687389227225E+05 )) m_vec = np.array ( ( \ 0, 0, 0, 0, \ 0, 1, 1, 1, \ 1, 0, 1, 2, \ 3, 2, 2, 3, \ 3, 4, 4, 5 )) n_vec = np.array ( ( \ 1, 2, 3, 4, \ 5, 1, 2, 3, \ 4, 3, 3, 3, \ 3, 4, 5, 6, \ 7, 8, 9, 10 )) x_vec = np.array ( ( \ 0.00E+00, \ 0.00E+00, \ 0.00E+00, \ 0.00E+00, \ 0.00E+00, \ 0.50E+00, \ 0.50E+00, \ 0.50E+00, \ 0.50E+00, \ 0.20E+00, \ 0.20E+00, \ 0.20E+00, \ 0.20E+00, \ 0.25E+00, \ 0.25E+00, \ 0.25E+00, \ 0.25E+00, \ 0.25E+00, \ 0.25E+00, \ 0.25E+00 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 n = 0 m = 0 x = 0.0 f = 0.0 else: n = n_vec[n_data] m = m_vec[n_data] x = x_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, n, m, x, f def legendre_associated_values_test ( ): #*****************************************************************************80 # ## LEGENDRE_ASSOCIATED_VALUES_TEST demonstrates the use of LEGENDRE_ASSOCIATED_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 February 2015 # # Author: # # John Burkardt # print '' print 'LEGENDRE_ASSOCIATED_VALUES_TEST:' print ' LEGENDRE_ASSOCIATED_VALUES stores values of the associated Legendre function.' print '' print ' N M X F' print '' n_data = 0 while ( True ): n_data, n, m, x, f = legendre_associated_values ( n_data ) if ( n_data == 0 ): break print ' %6d %6d %12f %24.16g' % ( n, m, x, f ) print '' print 'LEGENDRE_ASSOCIATED_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) legendre_associated_values_test ( ) timestamp ( )