#!/usr/bin/env python # def legendre_function_q ( n, x ): #*****************************************************************************80 # ## LEGENDRE_FUNCTION_Q evaluates the Legendre QN functions. # # Differential equation: # # (1-X*X) Y'' - 2 X Y' + N (N+1) = 0 # # First terms: # # Q(0)(X) = 0.5 * log((1+X)/(1-X)) # Q(1)(X) = Q(0)(X)*X - 1 # Q(2)(X) = Q(0)(X)*(3*X*X-1)/4 - 1.5*X # Q(3)(X) = Q(0)(X)*(5*X*X*X-3*X)/4 - 2.5*X^2 + 2/3 # Q(4)(X) = Q(0)(X)*(35*X^4-30*X^2+3)/16 - 35/8 * X^3 + 55/24 * X # Q(5)(X) = Q(0)(X)*(63*X^5-70*X^3+15*X)/16 - 63/8*X^4 + 49/8*X^2 - 8/15 # # Recursion: # # Q(0) = 0.5 * log ( (1+X) / (1-X) ) # Q(1) = 0.5 * X * log ( (1+X) / (1-X) ) - 1.0 # # Q(N) = ( (2*N-1) * X * Q(N-1) - (N-1) * Q(N-2) ) / N # # Restrictions: # # -1 < X < 1 # # Special values: # # Note that the Legendre function Q(N)(X) is equal to the # associated Legendre function of the second kind, # Q(N,M)(X) with M = 0. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Parameters: # # Input, integer N, the highest order function to evaluate. # # Input, real X, the point at which the functions are to be # evaluated. X must satisfy -1 < X < 1. # # Output, real CX(1:N+1), the values of the first N+1 Legendre # functions at the point X. # import numpy as np # # Check the value of X. # if ( x <= -1.0 or 1.0 <= x ): print '' print 'LEGENDRE_FUNCTION_Q - Fatal error!' print ' Illegal input value of X = %f' % ( x ) print ' But X must be between -1 and 1.' cx = np.zeros ( n + 1 ) cx[0] = 0.5 * np.log ( ( 1.0 + x ) / ( 1.0 - x ) ) if ( 0 < n ): cx[1] = x * cx[0] - 1.0 for i in range ( 2, n + 1 ): cx[i] = ( float ( 2 * i - 1 ) * x * cx[i] \ + float ( - i + 1 ) * cx[i-1] ) \ / float ( i ) return cx def legendre_function_q_test ( ): #*****************************************************************************80 # ## LEGENDRE_FUNCTION_Q_TEST tests LEGENDRE_FUNCTION_Q. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # from legendre_function_q_values import legendre_function_q_values print '' print 'LEGENDRE_FUNCTION_Q_TEST' print ' LEGENDRE_FUNCTION_Q computes Legendre QN functions' print '' print ' N X Exact F Q(N)(X)' print '' n_data = 0 while ( True ): n_data, n, x, f = legendre_function_q_values ( n_data ) if ( n_data == 0 ): break f2 = legendre_function_q ( n, x ) print ' %6d %6f %12f %12f' % ( n, x, f, f2[n] ) print '' print 'LEGENDRE_FUNCTION_Q_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) legendre_function_q_test ( ) timestamp ( )