#!/usr/bin/env python # def legendre_poly ( n, x ): #*****************************************************************************80 # ## LEGENDRE_POLY evaluates the Legendre polynomials P(N)(X) at X. # # Discussion: # # P(N)(1) = 1. # P(N)(-1) = (-1)^N. # abs ( P(N)(X) ) <= 1 in [-1,1]. # # P(N,0)(X) = P(N)(X), that is, for M=0, the associated Legendre # function of the first kind and order N equals the Legendre polynomial # of the first kind and order N. # # The N zeroes of P(N)(X) are the abscissas used for Gauss-Legendre # quadrature of the integral of a function F(X) with weight function 1 # over the interval [-1,1]. # # The Legendre polynomials are orthogonal under the inner product defined # as integration from -1 to 1: # # Integral ( -1 <= X <= 1 ) P(I)(X) * P(J)(X) dX # = 0 if I =/= J # = 2 / ( 2*I+1 ) if I = J. # # Except for P(0)(X), the integral of P(I)(X) from -1 to 1 is 0. # # A function F(X) defined on [-1,1] may be approximated by the series # C0*P(0)(X) + C1*P(1)(X) + ... + CN*P(N)(X) # where # C(I) = (2*I+1)/(2) * Integral ( -1 <= X <= 1 ) F(X) P(I)(X) dx. # # Differential equation: # # (1-X*X) * P(N)(X)'' - 2 * X * P(N)(X)' + N * (N+1) = 0 # # First terms: # # P( 0)(X) = 1 # P( 1)(X) = 1 X # P( 2)(X) = ( 3 X^2 - 1)/2 # P( 3)(X) = ( 5 X^3 - 3 X)/2 # P( 4)(X) = ( 35 X^4 - 30 X^2 + 3)/8 # P( 5)(X) = ( 63 X^5 - 70 X^3 + 15 X)/8 # P( 6)(X) = ( 231 X^6 - 315 X^4 + 105 X^2 - 5)/16 # P( 7)(X) = ( 429 X^7 - 693 X^5 + 315 X^3 - 35 X)/16 # P( 8)(X) = ( 6435 X^8 - 12012 X^6 + 6930 X^4 - 1260 X^2 + 35)/128 # P( 9)(X) = (12155 X^9 - 25740 X^7 + 18018 X^5 - 4620 X^3 + 315 X)/128 # P(10)(X) = (46189 X^10-109395 X^8 + 90090 X^6 - 30030 X^4 + 3465 X^2-63 )/256 # # Recursion: # # P(0)(X) = 1 # P(1)(X) = X # P(N)(X) = ( (2*N-1)*X*P(N-1)(X)-(N-1)*P(N-2)(X) ) / N # # P'(0)(X) = 0 # P'(1)(X) = 1 # P'(N)(X) = ( (2*N-1)*(P(N-1)(X)+X*P'(N-1)(X)-(N-1)*P'(N-2)(X) ) / N # # Formula: # # P(N)(X) = (1/2**N) * sum ( 0 <= M <= N/2 ) C(N,M) C(2N-2M,N) X^(N-2*M) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 03 August 2004 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Daniel Zwillinger, editor, # CRC Standard Mathematical Tables and Formulae, # 30th Edition, # CRC Press, 1996. # # Parameters: # # Input, integer N, the highest order polynomial to evaluate. # Note that polynomials 0 through N will be evaluated. # # Input, real X, the point at which the polynomials are to be evaluated. # # Output, real CX(1:N+1), the values of the Legendre polynomials # of order 0 through N at the point X. # # Output, real CPX(1:N+1), the values of the derivatives of the # Legendre polynomials of order 0 through N at the point X. # import numpy as np cx = np.zeros ( n + 1 ) cpx = np.zeros ( n + 1 ) cx[0] = 1.0 cpx[0] = 0.0 if ( 0 < n ): cx[1] = x cpx[1] = 1.0 for i in range ( 2, n + 1 ): cx[i] = ( float ( 2 * i - 1 ) * x * cx[i-1] \ - float ( i - 1 ) * cx[i-2] ) \ / float ( i ) cpx[i] = ( float ( 2 * i - 1 ) * ( cx[i-1] + x * cpx[i-1] ) \ - float ( i - 1 ) * cpx[i-2] ) \ / float ( i ) return cx, cpx def legendre_poly_test ( ): #*****************************************************************************80 # ## LEGENDRE_POLY_TEST tests LEGENDRE_POLY. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # from legendre_poly_values import legendre_poly_values print '' print 'LEGENDRE_POLY_TEST' print ' LEGENDRE_POLY computes Legendre polynomials;' print '' print ' N X Exact F L(N)(X)' print '' n_data = 0 while ( True ): n_data, n, x, f = legendre_poly_values ( n_data ) if ( n_data == 0 ): break f2, fp2 = legendre_poly ( n, x ) print ' %6d %6f %12f %12f' % ( n, x, f, f2[n] ) print '' print 'LEGENDRE_POLY_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) legendre_poly_test ( ) timestamp ( )