#!/usr/bin/env python # def legendre_poly_coef ( n ): #*****************************************************************************80 # ## LEGENDRE_POLY_COEF evaluates the Legendre polynomial coefficients. # # First terms: # # 1 # 0 1 # -1/2 0 3/2 # 0 -3/2 0 5/2 # 3/8 0 -30/8 0 35/8 # 0 15/8 0 -70/8 0 63/8 # -5/16 0 105/16 0 -315/16 0 231/16 # 0 -35/16 0 315/16 0 -693/16 0 429/16 # # 1.00000 # 0.00000 1.00000 # -0.50000 0.00000 1.50000 # 0.00000 -1.50000 0.00000 2.5000 # 0.37500 0.00000 -3.75000 0.00000 4.37500 # 0.00000 1.87500 0.00000 -8.75000 0.00000 7.87500 # -0.31250 0.00000 6.56250 0.00000 -19.6875 0.00000 14.4375 # 0.00000 -2.1875 0.00000 19.6875 0.00000 -43.3215 0.00000 26.8125 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Daniel Zwillinger, editor, # CRC Standard Mathematical Tables and Formulae, # 30th Edition, # CRC Press, 1996. # # Parameters: # # Input, integer N, the highest order polynomial to evaluate. # Note that polynomials 0 through N will be evaluated. # # Output, real C(1:N+1,1:N+1), the coefficients of the Legendre polynomials # of degree 0 through N. Each polynomial is stored as a row. # import numpy as np c = np.zeros ( ( n + 1, n + 1 ) ) c[0,0] = 1.0 if ( 0 < n ): c[1,1] = 1.0 for i in range ( 2, n + 1 ): for j in range ( 0, i ): c[i,j] = float ( - i + 1 ) * c[i-2,j] / float ( i ) for j in range ( 1, i + 1 ): c[i,j] = c[i,j] + float ( i + i - 1 ) * c[i-1,j-1] / float ( i ) return c def legendre_poly_coef_test ( ): #*****************************************************************************80 # ## LEGENDRE_POLY_COEF_TEST tests LEGENDRE_POLY_COEF. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # n = 5 print '' print 'LEGENDRE_POLY_COEF_TEST' print ' LEGENDRE_POLY_COEF determines the Legendre' print ' polynomial coefficients.' c = legendre_poly_coef ( n ) for i in range ( 0, n + 1 ): print '' print ' L(%d)' % ( i ) print '' for j in range ( i, -1, -1 ): if ( j == 0 ): print ' %f' % ( c[i,j] ) elif ( j == 1 ): print ' %f * x' % ( c[i,j] ) else: print ' %f * x^%d' % ( c[i,j], j ) print '' print 'LEGENDRE_POLY_COEF_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) legendre_poly_coef_test ( ) timestamp ( )