#!/usr/bin/env python # def lerch ( z, s, a ): #*****************************************************************************80 # ## LERCH estimates the Lerch transcendent function. # # Discussion: # # The Lerch transcendent function is defined as: # # LERCH ( Z, S, A ) = Sum ( 0 <= K < Infinity ) Z^K / ( A + K )^S # # excluding any term with ( A + K ) = 0. # # In Mathematica, the function can be evaluated by: # # LerchPhi[z,s,a] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 February 2015 # # Author: # # John Burkardt # # Reference: # # Eric Weisstein, editor, # CRC Concise Encylopedia of Mathematics, # CRC Press, 1998. # # Thanks: # # Oscar van Vlijmen # # Parameters: # # Input, real Z, integer S, real A, # the parameters of the function. # # Output, real VALUE, an approximation to the Lerch # transcendent function. # value = 0.0 if ( z <= 0.0 ): return value eps = 1.0E-10 k = 0 z_k = 1.0 while ( True ): if ( a + k != 0.0 ): term = z_k / ( a + k ) ** s value = value + term if ( abs ( term ) <= eps * ( 1.0 + abs ( value ) ) ): break k = k + 1 z_k = z_k * z return value def lerch_test ( ): #*****************************************************************************80 # ## LERCH_TEST tests LERCH. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 February 2015 # # Author: # # John Burkardt # from lerch_values import lerch_values print '' print 'LERCH_TEST' print ' LERCH evaluates the Lerch function;' print '' print ' Z S A Lerch Lerch' print ' Tabulated Computed' print '' n_data = 0 while ( True ): n_data, z, s, a, f = lerch_values ( n_data ) if ( n_data == 0 ): break f2 = lerch ( z, s, a ) print ' %8g %4d %8g %14g %14g' % ( z, s, a, f, f2 ) print '' print 'LERCH_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) lerch_test ( ) timestamp ( )