#!/usr/bin/env python # def lerch_values ( n_data ): #*****************************************************************************80 # ## LERCH_VALUES returns some values of the Lerch transcendent function. # # Discussion: # # The Lerch function is defined as # # Phi(z,s,a) = Sum ( 0 <= k < Infinity ) z^k / ( a + k )^s # # omitting any terms with ( a + k ) = 0. # # In Mathematica, the function can be evaluated by: # # LerchPhi[z,s,a] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 February 2015 # # Author: # # John Burkardt # # Reference: # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real Z, the parameters of the function. # # Output, integer S, the parameters of the function. # # Output, real A, the parameters of the function. # # Output, real F, the value of the function. # import numpy as np n_max = 12 a_vec = np.array ( ( \ 0.0E+00, \ 0.0E+00, \ 0.0E+00, \ 1.0E+00, \ 1.0E+00, \ 1.0E+00, \ 2.0E+00, \ 2.0E+00, \ 2.0E+00, \ 3.0E+00, \ 3.0E+00, \ 3.0E+00 )) f_vec = np.array ( ( \ 0.1644934066848226E+01, \ 0.1202056903159594E+01, \ 0.1000994575127818E+01, \ 0.1164481052930025E+01, \ 0.1074426387216080E+01, \ 0.1000492641212014E+01, \ 0.2959190697935714E+00, \ 0.1394507503935608E+00, \ 0.9823175058446061E-03, \ 0.1177910993911311E+00, \ 0.3868447922298962E-01, \ 0.1703149614186634E-04 )) s_vec = np.array ( ( \ 2, 3, 10, \ 2, 3, 10, \ 2, 3, 10, \ 2, 3, 10 )) z_vec = np.array ( ( \ 0.1000000000000000E+01, \ 0.1000000000000000E+01, \ 0.1000000000000000E+01, \ 0.5000000000000000E+00, \ 0.5000000000000000E+00, \ 0.5000000000000000E+00, \ 0.3333333333333333E+00, \ 0.3333333333333333E+00, \ 0.3333333333333333E+00, \ 0.1000000000000000E+00, \ 0.1000000000000000E+00, \ 0.1000000000000000E+00 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 z = 0.0 s = 0 a = 0.0 f = 0.0 else: z = z_vec[n_data] s = s_vec[n_data] a = a_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, z, s, a, f def lerch_values_test ( ): #*****************************************************************************80 # ## LERCH_VALUES_TEST demonstrates the use of LERCH_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 February 2015 # # Author: # # John Burkardt # print '' print 'LERCH_VALUES_TEST:' print ' LERCH_VALUES stores values of the Lerch function.' print '' print ' Z S A F' print '' n_data = 0 while ( True ): n_data, z, s, a, f = lerch_values ( n_data ) if ( n_data == 0 ): break print ' %12f %6d %12f %24.16f' % ( z, s, a, f ) print '' print 'LERCH_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) lerch_values_test ( ) timestamp ( )