#!/usr/bin/env python # def meixner ( n, beta, c, x ): #*****************************************************************************80 # ## MEIXNER evaluates Meixner polynomials at a point. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 February 2010 # # Author: # # John Burkardt # # Reference: # # Walter Gautschi, # Orthogonal Polynomials: Computation and Approximation, # Oxford, 2004, # ISBN: 0-19-850672-4, # LC: QA404.5 G3555. # # Parameters: # # Input, integer N, the maximum order of the polynomial. # N must be at least 0. # # Input, real BETA, the Beta parameter. 0 < BETA. # # Input, real C, the C parameter. 0 < C < 1. # # Input, real X, the evaluation point. # # Output, real VALUE(N+1), the value of the polynomials at X. # import numpy as np value = np.zeros ( n + 1 ) if ( beta <= 0.0 ): print '' print 'MEIXNER - Fatal error!' print ' Parameter BETA must be positive.' if ( c <= 0.0 or 1.0 <= c ): print '' print 'MEIXNER - Fatal error!' print ' Parameter C must be strictly between 0 and 1.' if ( n < 0 ): print '' print 'MEIXNER - Fatal error!' print ' Parameter N must be nonnegative.' value[0] = 1.0 if ( 0 < n ): value[1] = ( c - 1.0 ) * x / beta / c + 1.0 for i in range ( 1, n ): value[i+1] = ( \ ( ( c - 1.0 ) * x + ( 1.0 + c ) * float ( i ) + beta * c ) * value[i] \ - float ( i ) * value[i-1] \ ) / ( float ( i ) + beta ) return value def meixner_test ( ): #*****************************************************************************80 # ## MEIXNER_TEST tests MEIXNER. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 February 2015 # # Author: # # John Burkardt # import numpy as np test_num = 3 beta_test = np.array ( [ 0.5, 1.0, 2.0 ] ) c_test = np.array ( [ 0.125, 0.25, 0.5 ] ) print '' print 'MEIXNER_TEST:' print ' MEIXNER evaluates Meixner polynomials.' print '' print ' N BETA C X M(N,BETA,C,X)' for test in range ( 0, test_num ): n = 5 beta = beta_test[test] c = c_test[test] for j in range ( 0, 6 ): x = float ( j ) / 2.0 value = meixner ( n, beta, c, x ) print '' for i in range ( 0, n + 1 ): print ' %8d %8g %8g %8g %14g' % ( i, beta, c, x, value[i] ) print '' print 'MEIXNER_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) meixner_test ( ) timestamp ( )