#!/usr/bin/env python # def mertens ( n ): #*****************************************************************************80 # ## MERTENS evaluates the Mertens function. # # Discussion: # # The Mertens function M(N) is the sum from 1 to N of the Moebius # function MU. That is, # # M(N) = sum ( 1 <= I <= N ) MU(I) # # N M(N) # -- ---- # 1 1 # 2 0 # 3 -1 # 4 -1 # 5 -2 # 6 -1 # 7 -2 # 8 -2 # 9 -2 # 10 -1 # 11 -2 # 12 -2 # 100 1 # 1000 2 # 10000 -23 # 100000 -48 # # The determinant of the Redheffer matrix of order N is equal # to the Mertens function M(N). # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 February 2015 # # Author: # # John Burkardt # # Reference: # # M Deleglise, J Rivat, # Computing the Summation of the Moebius Function, # Experimental Mathematics, # Volume 5, 1996, pages 291-295. # # Eric Weisstein, # CRC Concise Encyclopedia of Mathematics, # CRC Press, 2002, # Second edition, # ISBN: 1584883472, # LC: QA5.W45 # # Parameters: # # Input, integer N, the argument. # # Output, integer VALUE, the value. # from moebius import moebius value = 0 for i in range ( 1, n + 1 ): value = value + moebius ( i ) return value def mertens_test ( ): #*****************************************************************************80 # ## MERTENS_TEST tests MERTENS. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 February 2015 # # Author: # # John Burkardt # from mertens_values import mertens_values print '' print 'MERTENS_TEST' print ' MERTENS computes the Mertens function.' print '' print ' N Exact MERTENS(N)' print '' n_data = 0 while ( True ): n_data, n, c = mertens_values ( n_data ) if ( n_data == 0 ): break c2 = mertens ( n ) print ' %4d %8d %8d' % ( n, c, c2 ) print '' print 'MERTENS_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) mertens_test ( ) timestamp ( )