#!/usr/bin/env python # def motzkin ( n ): #*****************************************************************************80 # ## MOTZKIN returns the Motzkin numbers up to order N. # # Discussion: # # The Motzkin number A(N) counts the number of distinct paths # from (0,0) to (0,N) in which the only steps used are # (1,1), (1,-1) and (1,0), and the path is never allowed to # go below the X axis. # # First values: # # N A(N) # # 0 1 # 1 1 # 2 2 # 3 4 # 4 9 # 5 21 # 6 51 # 7 127 # 8 323 # 9 835 # 10 2188 # # Recursion: # # A(N) = A(N-1) + sum ( 0 <= K <= N-2 ) A(K) * A(N-2-K) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 February 2015 # # Author: # # John Burkardt # # Reference: # # Eric Weisstein # CRC Concise Encyclopedia of Mathematics, # CRC Press, 1998 # # Parameters: # # Input, integer N, the highest order Motzkin number to compute. # # Output, integer A(1:N+1), the Motzkin numbers. # import numpy as np a = np.zeros ( n + 1 ) a[0] = 1 for i in range ( 1, n + 1 ): a[i] = a[i-1] for j in range ( 0, i - 1 ): a[i] = a[i] + a[j] * a[i-j-2] return a def motzkin_test ( ): #*****************************************************************************80 # ## MOTZKIN_TEST tests MOTZKIN. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 February 2015 # # Author: # # John Burkardt # n = 10 print '' print 'MOTZKIN_TEST' print ' MOTZKIN computes the Motzkin numbers A(0:N).' print ' A(N) counts the paths from (0,0) to (N,0).' print '' print ' I A(I)' print '' a = motzkin ( n ) for i in range ( 0, n + 1 ): print ' %4d %10d' % ( i, a[i] ) print '' print 'MOTZKIN_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) motzkin_test ( ) timestamp ( )