#!/usr/bin/env python def normal_01_cdf_inverse ( p ): #*****************************************************************************80 # ## NORMAL_01_CDF_INVERSE inverts the standard normal CDF. # # Discussion: # # The result is accurate to about 1 part in 10^16. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 February 2015 # # Author: # # Original FORTRAN77 version by Michael Wichura. # Python version by John Burkardt. # # Reference: # # Michael Wichura, # The Percentage Points of the Normal Distribution, # Algorithm AS 241, # Applied Statistics, # Volume 37, Number 3, pages 477-484, 1988. # # Parameters: # # Input, real P, the value of the cumulative probability # densitity function. 0 < P < 1. If P is not in this range, an "infinite" # result is returned. # # Output, real VALUE, the normal deviate value with the # property that the probability of a standard normal deviate being # less than or equal to the value is P. # import numpy as np from r8_huge import r8_huge from r8poly_value_horner import r8poly_value_horner a = np.array ( (\ 3.3871328727963666080, 1.3314166789178437745e+2, \ 1.9715909503065514427e+3, 1.3731693765509461125e+4, \ 4.5921953931549871457e+4, 6.7265770927008700853e+4, \ 3.3430575583588128105e+4, 2.5090809287301226727e+3 )) b = np.array ( (\ 1.0, 4.2313330701600911252e+1, \ 6.8718700749205790830e+2, 5.3941960214247511077e+3, \ 2.1213794301586595867e+4, 3.9307895800092710610e+4, \ 2.8729085735721942674e+4, 5.2264952788528545610e+3 )) c = np.array ( (\ 1.42343711074968357734, 4.63033784615654529590, \ 5.76949722146069140550, 3.64784832476320460504, \ 1.27045825245236838258, 2.41780725177450611770e-1, \ 2.27238449892691845833e-2, 7.74545014278341407640e-4 )) const1 = 0.180625 const2 = 1.6 d = np.array ( (\ 1.0, 2.05319162663775882187, \ 1.67638483018380384940, 6.89767334985100004550e-1, \ 1.48103976427480074590e-1, 1.51986665636164571966e-2, \ 5.47593808499534494600e-4, 1.05075007164441684324e-9 )) e = np.array ( (\ 6.65790464350110377720, 5.46378491116411436990, \ 1.78482653991729133580, 2.96560571828504891230e-1, \ 2.65321895265761230930e-2, 1.24266094738807843860e-3, \ 2.71155556874348757815e-5, 2.01033439929228813265e-7 )) f = np.array ( (\ 1.0, 5.99832206555887937690e-1, \ 1.36929880922735805310e-1, 1.48753612908506148525e-2, \ 7.86869131145613259100e-4, 1.84631831751005468180e-5, \ 1.42151175831644588870e-7, 2.04426310338993978564e-15 )) split1 = 0.425 split2 = 5.0 if ( p <= 0.0 ): value = - r8_huge ( ) return value if ( 1.0 <= p ): value = r8_huge ( ) return value q = p - 0.5 if ( abs ( q ) <= split1 ): r = const1 - q * q value = q * r8poly_value_horner ( 7, a, r ) \ / r8poly_value_horner ( 7, b, r ) else: if ( q < 0.0 ): r = p else: r = 1.0 - p if ( r <= 0.0 ): value = r8_huge ( ) else: r = np.sqrt ( - np.log ( r ) ) if ( r <= split2 ): r = r - const2 value = r8poly_value_horner ( 7, c, r ) \ / r8poly_value_horner ( 7, d, r ) else: r = r - split2 value = r8poly_value_horner ( 7, e, r ) \ / r8poly_value_horner ( 7, f, r ) if ( q < 0.0 ): value = - value return value def normal_01_cdf_inverse_test ( ): #*****************************************************************************80 # ## NORMAL_01_CDF_INVERSE_TEST tests NORMAL_01_CDF_INVERSE. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 February 2015 # # Author: # # John Burkardt # from normal_01_cdf_values import normal_01_cdf_values print '' print 'NORMAL_01_CDF_INVERSE_TEST:' print ' NORMAL_01_CDF_INVERSE inverts the error function.' print '' print ' FX X NORMAL_01_CDF_INVERSE(FX)' print '' n_data = 0 while ( True ): n_data, x1, fx = normal_01_cdf_values ( n_data ) if ( n_data == 0 ): break x2 = normal_01_cdf_inverse ( fx ) print ' %12g %24.16g %24.16g' % ( fx, x1, x2 ) print '' print 'NORMAL_01_CDF_INVERSE_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) normal_01_cdf_inverse_test ( ) timestamp ( )