#!/usr/bin/env python def omega ( n ) : #*****************************************************************************80 # ## OMEGA returns OMEGA(N), the number of distinct prime divisors of N. # # First values: # # N OMEGA(N) # # 1 1 # 2 1 # 3 1 # 4 1 # 5 1 # 6 2 # 7 1 # 8 1 # 9 1 # 10 2 # 11 1 # 12 2 # 13 1 # 14 2 # 15 2 # 16 1 # 17 1 # 18 2 # 19 1 # 20 2 # # Formula: # # If N = 1, then # # OMEGA(N) = 1 # # else if the prime factorization of N is # # N = P1^E1 * P2^E2 * ... * PM^EM, # # then # # OMEGA(N) = M # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the value to be analyzed. N must be 1 or # greater. # # Output, integer VALUE, the value of OMEGA(N). But if N is 0 or # less, NDIV is returned as 0, a nonsense value. If there is # not enough room for factoring, NDIV is returned as -1. # from i4_factor import i4_factor if ( n <= 0 ): value = 0 return value if ( n == 1 ): value = 1 return value # # Factor N. # nfactor, factor, power, nleft = i4_factor ( n ) if ( nleft != 1 ): print '' print 'OMEGA - Fatal error!' print ' Not enough factorization space.' value = nfactor return value def omega_test ( ): #*****************************************************************************80 # ## OMEGA_TEST tests OMEGA. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 February 2015 # # Author: # # John Burkardt # from omega_values import omega_values print '' print 'OMEGA_TEST' print ' OMEGA counts the distinct prime divisors of an integer N.' print '' print ' N Exact OMEGA(N)' n_data = 0 while ( True ): n_data, n, c1 = omega_values ( n_data ) if ( n_data == 0 ): break c2 = omega ( n ) print ' %8d %12d %12d' % ( n, c1, c2 ) print '' print 'OMEGA_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) omega_test ( ) timestamp ( )