#!/usr/bin/env python # def phi_values ( n_data ): #*****************************************************************************80 # ## PHI_VALUES returns some values of the PHI function. # # Discussion: # # PHI(N) is the number of integers between 1 and N which are # relatively prime to N. I and J are relatively prime if they # have no common factors. The function PHI(N) is known as # "Euler's totient function". # # By convention, 1 and N are relatively prime. # # In Mathematica, the function can be evaluated by: # # EulerPhi[n] # # First values: # # N PHI(N) # # 1 1 # 2 1 # 3 2 # 4 2 # 5 4 # 6 2 # 7 6 # 8 4 # 9 6 # 10 4 # 11 10 # 12 4 # 13 12 # 14 6 # 15 8 # 16 8 # 17 16 # 18 6 # 19 18 # 20 8 # # Formula: # # PHI(U*V) = PHI(U) * PHI(V) if U and V are relatively prime. # # PHI(P^K) = P^(K-1) * ( P - 1 ) if P is prime. # # PHI(N) = N * Product ( P divides N ) ( 1 - 1 / P ) # # N = Sum ( D divides N ) PHI(D). # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 20 September 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, integer N, the argument of the PHI function. # # Output, integer C, the value of the PHI function. # import numpy as np n_max = 20 c_vec = np.array ( ( \ 1, 1, 2, 2, 4, 2, 6, 4, 6, 4, \ 8, 8, 16, 20, 16, 40, 148, 200, 200, 648 )) n_vec = np.array ( ( \ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, \ 20, 30, 40, 50, 60, 100, 149, 500, 750, 999 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 n = 0 c = 0 else: n = n_vec[n_data] c = c_vec[n_data] n_data = n_data + 1 return n_data, n, c def phi_values_test ( ): #*****************************************************************************80 # ## PHI_VALUES_TEST demonstrates the use of PHI_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 20 February 2015 # # Author: # # John Burkardt # print '' print 'PHI_VALUES_TEST:' print ' PHI_VALUES stores values of the PHI function.' print '' print ' N PHI(N)' print '' n_data = 0 while ( True ): n_data, n, c = phi_values ( n_data ) if ( n_data == 0 ): break print ' %12d %12d' % ( n, c ) print '' print 'PHI_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) phi_values_test ( ) timestamp ( )