#!/usr/bin/env python def poly_bernoulli ( n, k ): #*****************************************************************************80 # ## POLY_BERNOULLI evaluates the poly-Bernolli numbers with negative index. # # Discussion: # # The poly-Bernoulli numbers B_n^k were defined by M Kaneko # formally as the coefficients of X^n/n% in a particular power # series. He also showed that, when the super-index is negative, # we have # # B_n^(-k) = Sum ( 0 <= j <= min ( n, k ) ) # (j%)^2 * S(n+1,j+1) * S(k+1,j+1) # # where S(n,k) is the Stirling number of the second kind, the number of # ways to partition a set of size n into k nonempty subset. # # B_n^(-k) is also the number of "lonesum matrices", that is, 0-1 # matrices of n rows and k columns which are uniquely reconstructable # from their row and column sums. # # The poly-Bernoulli numbers get large very quickly. # # Table: # # \ K 0 1 2 3 4 5 6 # N # 0 1 1 1 1 1 1 1 # 1 1 2 4 8 16 32 64 # 2 1 4 14 46 146 454 1394 # 3 1 8 46 230 1066 4718 20266 # 4 1 16 146 1066 6902 41506 237686 # 5 1 32 454 4718 41506 329462 2441314 # 6 1 64 1394 20266 237686 2441314 22934774 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 25 February 2015 # # Author: # # John Burkardt # # Reference: # # Chad Brewbaker, # Lonesum (0,1) Matrices and Poly-Bernoulli Numbers of Negative Index, # MS Thesis, # Iowa State University, 2005. # # M Kaneko, # Poly-Bernoulli Numbers, # Journal Theorie des Nombres Bordeaux, # Volume 9, 1997, pages 221-228. # # Parameters: # # Input, integer N, K, the indices. N and K should be nonnegative. # # Output, integer VALUE, the value of B_N^(-K). # from stirling2 import stirling2 if ( n < 0 ): value = 0 return value if ( n == 0 ): value = 1 return value if ( k < 0 ): value = 0 return value if ( k == 0 ): value = 1 return value jhi = min ( n, k ) m = max ( n, k ) + 1 s = stirling2 ( m, m ) jfact = 1 value = 0 for j in range ( 0, jhi + 1 ): value = value + jfact * jfact * s[n,j] * s[k,j] jfact = jfact * ( j + 1 ) return value def poly_bernoulli_test ( ): #*****************************************************************************80 # ## POLY_BERNOULLI_TEST tests POLY_BERNOULLI. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 25 February 2015 # # Author: # # John Burkardt # print '' print 'POLY_BERNOULLI_TEST' print ' POLY_BERNOULLI computes the poly-Bernoulli numbers' print ' of negative index, B_n^(-k)' print '' print ' N K B_N^(-K)' print '' for k in range ( 0, 7 ): print '' for n in range ( 0, 7 ): b = poly_bernoulli ( n, k ) print ' %6d %6d %6d' % ( n, k, b ) print '' print 'POLY_BERNOULLI_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) poly_bernoulli_test ( ) timestamp ( )