#!/usr/bin/env python def pyramid_num ( n ): #*****************************************************************************80 # ## PYRAMID_NUM returns the N-th pyramidal number. # # Discussion: # # The N-th pyramidal number P(N) is formed by the sum of the first # N triangular numbers T(J): # # T(J) = sum ( 1 <= J <= N ) J # # P(N) = sum ( 1 <= I <= N ) T(I) # # By convention, T(0) = 0. # # P(N) = ( (N+1)^3 - (N+1) ) / 6 # # Note that this pyramid will have a triangular base. # # The first values are: # # 0 # 1 # 4 # 10 # 20 # 35 # 56 # 84 # 120 # 165 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 04 December 2014 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the index of the desired number, which must be # at least 0. # # Output, integer VALUE, the N-th pyramidal number. # value = ( ( n + 1 ) ** 3 - ( n + 1 ) ) / 6 return value def pyramid_num_test ( ): #*****************************************************************************80 # ## PYRAMID_NUM_TEST tests PYRAMID_NUM. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 04 December 2014 # # Author: # # John Burkardt # print '' print 'PYRAMID_NUM_TEST' print ' PYRAMID_NUM computes the pyramidal numbers.' print '' for n in range ( 1, 11 ): print ' %2d %6d' % ( n, pyramid_num ( n ) ) print '' print 'PYRAMID_NUM_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) pyramid_num_test ( ) timestamp ( )