#!/usr/bin/env python def pyramid_square_num ( n ): #*****************************************************************************80 # ## PYRAMID_SQUARE_NUM returns the N-th pyramidal square number. # # Discussion: # # The N-th pyramidal square number PS(N) is formed by the sum of the first # N squares S: # # S(I) = I^2 # # PS(N) = sum ( 1 <= I <= N ) S(I) # # By convention, PS(0) = 0. # # The formula is: # # PS(N) = ( N * ( N + 1 ) * ( 2*N+1 ) ) / 6 # # Note that geometrically, this pyramid will have a square base. # # Example: # # 0 0 # 1 1 # 2 5 # 3 14 # 4 30 # 5 55 # 6 91 # 7 140 # 8 204 # 9 285 # 10 385 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 August 2014 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the index. # 0 <= N. # # Output, integer PYRAMID_SQUARE_NUM, the N-th # pyramid square number. # value = ( n * ( n + 1 ) * ( 2 * n + 1 ) ) / 6 return value def pyramid_square_num_test ( ): #*****************************************************************************80 # ## PYRAMID_SQUARE_NUM_TEST tests PYRAMID_SQUARE_NUM. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 04 December 2014 # # Author: # # John Burkardt # print '' print 'PYRAMID_SQUARE_NUM_TEST' print ' PYRAMID_SQUARE_NUM computes the pyramidal square numbers.' print '' for n in range ( 1, 11 ): print ' %2d %6d' % ( n, pyramid_square_num ( n ) ) print '' print 'PYRAMID_SQUARE_NUM_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) pyramid_square_num_test ( ) timestamp ( )