#!/usr/bin/env python def r8_gamma ( x ): #*****************************************************************************80 # ## R8_GAMMA evaluates Gamma(X) for a real argument. # # Discussion: # # This routine calculates the gamma function for a real argument X. # # Computation is based on an algorithm outlined in reference 1. # The program uses rational functions that approximate the gamma # function to at least 20 significant decimal digits. Coefficients # for the approximation over the interval (1,2) are unpublished. # Those for the approximation for 12 <= X are from reference 2. # # PYTHON provides a GAMMA function, which is likely to be faster, and more # accurate. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 July 2014 # # Author: # # Original FORTRAN77 version by William Cody, Laura Stoltz. # PYTHON version by John Burkardt. # # Reference: # # William Cody, # An Overview of Software Development for Special Functions, # in Numerical Analysis Dundee, 1975, # edited by GA Watson, # Lecture Notes in Mathematics 506, # Springer, 1976. # # John Hart, Ward Cheney, Charles Lawson, Hans Maehly, # Charles Mesztenyi, John Rice, Henry Thatcher, # Christoph Witzgall, # Computer Approximations, # Wiley, 1968, # LC: QA297.C64. # # Parameters: # # Input, real X, the argument of the function. # # Output, real VALUE, the value of the function. # import numpy as np from math import exp from math import floor from math import log from math import sin # # Coefficients for minimax approximation over (12, INF). # c = np.array ( [ -1.910444077728E-03, \ 8.4171387781295E-04, \ -5.952379913043012E-04, \ 7.93650793500350248E-04, \ -2.777777777777681622553E-03, \ 8.333333333333333331554247E-02, \ 5.7083835261E-03 ] ) # # Mathematical constants # r8_pi = 3.141592653589793 sqrtpi = 0.9189385332046727417803297 # # Machine dependent parameters # xbig = 171.624 xminin = 2.23E-308 eps = 2.22E-16 xinf = 1.79E+308 # # Numerator and denominator coefficients for rational minimax # approximation over (1,2). # p = np.array ( [ \ -1.71618513886549492533811E+00, \ 2.47656508055759199108314E+01, \ -3.79804256470945635097577E+02, \ 6.29331155312818442661052E+02, \ 8.66966202790413211295064E+02, \ -3.14512729688483675254357E+04, \ -3.61444134186911729807069E+04, \ 6.64561438202405440627855E+04 ] ) q = np.array ( [ \ -3.08402300119738975254353E+01, \ 3.15350626979604161529144E+02, \ -1.01515636749021914166146E+03, \ -3.10777167157231109440444E+03, \ 2.25381184209801510330112E+04, \ 4.75584627752788110767815E+03, \ -1.34659959864969306392456E+05, \ -1.15132259675553483497211E+05 ] ) parity = 0 fact = 1.0 n = 0 y = x # # Argument is negative. # if ( y <= 0.0 ): y = - x y1 = floor ( y ) res = y - y1 if ( res != 0.0 ): if ( y1 != floor ( y1 * 0.5 ) * 2.0 ): parity = 1 fact = - r8_pi / sin ( r8_pi * res ) y = y + 1.0 else: res = xinf value = res return value # # Argument is positive. # if ( y < eps ): # # Argument < EPS. # if ( xminin <= y ): res = 1.0 / y else: res = xinf value = res return value elif ( y < 12.0 ): y1 = y # # 0.0 < argument < 1.0. # if ( y < 1.0 ): z = y y = y + 1.0 # # 1.0 < argument < 12.0. # Reduce argument if necessary. # else: n = int ( floor ( y ) - 1 ) y = y - n z = y - 1.0 # # Evaluate approximation for 1.0 < argument < 2.0. # xnum = 0.0 xden = 1.0 for i in range ( 0, 8 ): xnum = ( xnum + p[i] ) * z xden = xden * z + q[i] res = xnum / xden + 1.0 # # Adjust result for case 0.0 < argument < 1.0. # if ( y1 < y ): res = res / y1 # # Adjust result for case 2.0 < argument < 12.0. # elif ( y < y1 ): for i in range ( 0, n ): res = res * y y = y + 1.0 else: # # Evaluate for 12.0 <= argument. # if ( y <= xbig ): ysq = y * y sum = c[6] for i in range ( 0, 6 ): sum = sum / ysq + c[i] sum = sum / y - y + sqrtpi sum = sum + ( y - 0.5 ) * log ( y ) res = exp ( sum ) else: res = xinf value = res return value # # Final adjustments and return. # if ( parity ): res = - res if ( fact != 1.0 ): res = fact / res value = res return value def r8_gamma_test ( ): #*****************************************************************************80 # ## R8_GAMMA_TEST demonstrates the use of R8_GAMMA. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 25 July 2014 # # Author: # # John Burkardt # from gamma_values import gamma_values print '' print 'R8_GAMMA_TEST:' print ' R8_GAMMA evaluates the Gamma function.' print '' print ' X GAMMA(X) R8_GAMMA(X)' print '' n_data = 0 while ( True ): n_data, x, fx1 = gamma_values ( n_data ) if ( n_data == 0 ): break fx2 = r8_gamma ( x ) print ' %12g %24.16g %24.16g' % ( x, fx1, fx2 ) print '' print 'R8_GAMMA_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) r8_gamma_test ( ) timestamp ( )