#!/usr/bin/env python # def r8_hyper_2f1 ( a, b, c, x ): #*****************************************************************************80 # ## R8_HYPER_2F1 evaluates the hypergeometric function F(A,B,C,X). # # Discussion: # # A minor bug was corrected. The HW variable, used in several places as # the "old" value of a quantity being iteratively improved, was not # being initialized. JVB, 11 February 2008. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 28 February 2015 # # Author: # # Original FORTRAN77 version by Shanjie Zhang, Jianming Jin. # Python version by John Burkardt. # # The F77 original version of this routine is copyrighted by # Shanjie Zhang and Jianming Jin. However, they give permission to # incorporate this routine into a user program provided that the copyright # is acknowledged. # # Reference: # # Shanjie Zhang, Jianming Jin, # Computation of Special Functions, # Wiley, 1996, # ISBN: 0-471-11963-6, # LC: QA351.C45 # # Parameters: # # Input, real A, B, C, X, the arguments of the function. # C must not be equal to a nonpositive integer. # X < 1. # # Output, real VALUE, the value of the function. # import numpy as np from r8_gamma import r8_gamma from r8_psi import r8_psi el = 0.5772156649015329 l0 = ( c == int ( c ) ) and ( c < 0.0 ) l1 = ( 1.0 - x < 1.0E-15 ) and ( c - a - b <= 0.0 ) l2 = ( a == int ( a ) ) and ( a < 0.0 ) l3 = ( b == int ( b ) ) and ( b < 0.0 ) l4 = ( c - a == int ( c - a ) ) and ( c - a <= 0.0 ) l5 = ( c - b == int ( c - b ) ) and ( c - b <= 0.0 ) if ( l0 ): print '' print 'R8_HYPER_2F1 - Fatal error!' print ' The hypergeometric series is divergent.' print ' C is integral and negative.' print ' C = %f' % ( c ) if ( l1 ): print '' print 'R8_HYPER_2F1 - Fatal error!' print ' The hypergeometric series is divergent.' print ' 1 = X < 0, C - A - B <= 0.' print ' A = %f' % ( a ) print ' B = %f' % ( b ) print ' C = %f' % ( c ) print ' X = %f' % ( x ) if ( 0.95 < x ): eps = 1.0E-08 else: eps = 1.0E-15 if ( x == 0.0 or a == 0.0 or b == 0.0 ): value = 1.0 return value elif ( 1.0 - x == eps and 0.0 < c - a - b ): gc = r8_gamma ( c ) gcab = r8_gamma ( c - a - b ) gca = r8_gamma ( c - a ) gcb = r8_gamma ( c - b ) value = gc * gcab / ( gca * gcb ) return value elif ( 1.0 + x <= eps and abs ( c - a + b - 1.0 ) <= eps ): g0 = np.sqrt ( np.pi ) * 2.0 ** ( - a ) g1 = r8_gamma ( c ) g2 = r8_gamma ( 1.0 + a / 2.0 - b ) g3 = r8_gamma ( 0.5 + 0.5 * a ) value = g0 * g1 / ( g2 * g3 ) return value elif ( l2 or l3 ): if ( l2 ): nm = int ( abs ( a ) ) if ( l3 ): nm = int ( abs ( b ) ) value = 1.0 r = 1.0 for k in range ( 1, nm + 1 ): r = r * ( a + float ( k ) - 1.0 ) * ( b + float ( k ) - 1.0 ) \ / ( float ( k ) * ( c + float ( k ) - 1.0 ) ) * x value = value + r return value elif ( l4 or l5 ): if ( l4 ): nm = int ( abs ( c - a ) ) if ( l5 ): nm = int ( abs ( c - b ) ) value = 1.0 r = 1.0 for k in range ( 1, nm + 1 ): r = r * ( c - a + float ( k ) - 1.0 ) * ( c - b + float ( k ) - 1.0 ) \ / ( float ( k ) * ( c + float ( k ) - 1.0 ) ) * x value = value + r value = ( 1.0 - x ) ** ( c - a - b ) * hf return value aa = a bb = b x1 = x if ( x < 0.0 ): x = x / ( x - 1.0 ) if ( a < c and b < a and 0.0 < b ): a = bb b = aa b = c - b if ( 0.75 <= x ): gm = 0.0 if ( abs ( c - a - b - int ( c - a - b ) ) < 1.0E-15 ): m = int ( c - a - b ) ga = r8_gamma ( a ) gb = r8_gamma ( b ) gc = r8_gamma ( c ) gam = r8_gamma ( a + float ( m ) ) gbm = r8_gamma ( b + float ( m ) ) pa = r8_psi ( a ) pb = r8_psi ( b ) if ( m != 0 ): gm = 1.0 for j in range ( 1, abs ( m ) ): gm = gm * float ( j ) rm = 1.0 for j in range ( 1, abs ( m ) + 1 ): rm = rm * float ( j ) f0 = 1.0 r0 = 1.0 r1 = 1.0 sp0 = 0.0 sp = 0.0 if ( 0 <= m ): c0 = gm * gc / ( gam * gbm ) c1 = - gc * ( x - 1.0 ) ** m / ( ga * gb * rm ) for k in range ( 1, m ): r0 = r0 * ( a + float ( k ) - 1.0 ) * ( b + float ( k ) - 1.0 ) \ / float ( k * ( k - m ) ) * ( 1.0 - x ) f0 = f0 + r0 for k in range ( 1, m + 1 ): sp0 = sp0 + 1.0 / ( a + float ( k ) - 1.0 ) \ + 1.0 / ( b + float ( k ) - 1.0 ) - 1.0 / float ( k ) f1 = pa + pb + sp0 + 2.0 * el + np.log ( 1.0 - x ) hw = f1 for k in range ( 1, 251 ): sp = sp + ( 1.0 - a ) / ( float ( k ) * ( a + float ( k ) - 1.0 ) ) \ + ( 1.0 - b ) / ( float ( k ) * ( b + float ( k ) - 1.0 ) ) sm = 0.0 for j in range ( 1, m + 1 ): sm = sm + ( 1.0 - a ) \ / ( float ( j + k ) * ( a + float ( j + k ) - 1.0 ) ) \ + 1.0 / ( b + float ( j + k ) - 1.0 ) rp = pa + pb + 2.0 * el + sp + sm + np.log ( 1.0 - x ) r1 = r1 * ( a + m + float ( k ) - 1.0 ) * ( b + m + float ( k ) - 1.0 ) \ / ( float ( k ) * float ( m + k ) ) * ( 1.0 - x ) f1 = f1 + r1 * rp if ( abs ( f1 - hw ) < abs ( f1 ) * eps ): break hw = f1 value = f0 * c0 + f1 * c1 elif ( m < 0 ): m = - m c0 = gm * gc / ( ga * gb * ( 1.0 - x ) ** m ) c1 = - ( - 1 ) ** m * gc / ( gam * gbm * rm ) for k in range ( 1, m ): r0 = r0 * ( a - float ( m ) + float ( k ) - 1.0 ) \ * ( b - float ( m ) + float ( k ) - 1.0 ) \ / ( float ( k ) * float ( k - m ) ) * ( 1.0 - x ) f0 = f0 + r0 for k in range ( 1, m + 1 ): sp0 = sp0 + 1.0 / float ( k ) f1 = pa + pb - sp0 + 2.0 * el + np.log ( 1.0 - x ) hw = f1 for k in range ( 1, 251 ): sp = sp + ( 1.0 - a ) \ / ( float ( k ) * ( a + float ( k ) - 1.0 ) ) \ + ( 1.0 - b ) / ( float ( k ) * ( b + float ( k ) - 1.0 ) ) sm = 0.0 for j in range ( 1, m + 1 ): sm = sm + 1.0 / float ( j + k ) rp = pa + pb + 2.0 * el + sp - sm + np.log ( 1.0 - x ) r1 = r1 * ( a + float ( k ) - 1.0 ) * ( b + float ( k ) - 1.0 ) \ / float ( k * ( m + k ) ) * ( 1.0 - x ) f1 = f1 + r1 * rp if ( abs ( f1 - hw ) < abs ( f1 ) * eps ): break hw = f1 value = f0 * c0 + f1 * c1 else: ga = r8_gamma ( a ) gb = r8_gamma ( b ) gc = r8_gamma ( c ) gca = r8_gamma ( c - a ) gcb = r8_gamma ( c - b ) gcab = r8_gamma ( c - a - b ) gabc = r8_gamma ( a + b - c ) c0 = gc * gcab / ( gca * gcb ) c1 = gc * gabc / ( ga * gb ) * ( 1.0 - x ) ** ( c - a - b ) value = 0.0 hw = value r0 = c0 r1 = c1 for k in range ( 1, 251 ): r0 = r0 * ( a + float ( k ) - 1.0 ) * ( b + float ( k ) - 1.0 ) \ / ( float ( k ) * ( a + b - c + float ( k ) ) ) * ( 1.0 - x ) r1 = r1 * ( c - a + float ( k ) - 1.0 ) \ * ( c - b + float ( k ) - 1.0 ) \ / ( float ( k ) * ( c - a - b + float ( k ) ) ) * ( 1.0 - x ) value = value + r0 + r1 if ( abs ( value - hw ) < abs ( value ) * eps ): break hw = value value = value + c0 + c1 else: a0 = 1.0 if ( a < c and c < 2.0 * a and b < c and c < 2.0 * b ): a0 = ( 1.0 - x ) ** ( c - a - b ) a = c - a b = c - b value = 1.0 hw = value r = 1.0 for k in range ( 1, 251 ): r = r * ( a + float ( k ) - 1.0 ) * ( b + float ( k ) - 1.0 ) \ / ( k * ( c + float ( k ) - 1.0 ) ) * x value = value + r if ( abs ( value - hw ) <= abs ( value ) * eps ): break hw = value value = a0 * value if ( x1 < 0.0 ): x = x1 c0 = 1.0 / ( 1.0 - x ) ** aa value = c0 * value if ( 120 < k ): print '' print 'R8_HYPER_2F1 - Warning!' print ' A large number of iterations were needed.' print ' The accuracy of the results should be checked.' return value def r8_hyper_2f1_test ( ): #*****************************************************************************80 # ## R8_HYPER_2F1_TEST tests R8_HYPER_2F1. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 28 February 2015 # # Author: # # John Burkardt # import numpy as np from hyper_2f1_values import hyper_2f1_values print '' print 'R8_HYPER_2F1_TEST' print ' R8_HYPER_2F1 evaluates the hypergeometric 2F1 function.' print '' print ' A B C X ', print ' 2F1 2F1 DIFF' print ' ' print '(tabulated) (computed)' print '' n_data = 0 while ( True ): [ n_data, a, b, c, x, fx1 ] = hyper_2f1_values ( n_data ) if ( n_data == 0 ): break fx2 = r8_hyper_2f1 ( a, b, c, x ) diff = abs ( fx1 - fx2 ) print ' %6g %6g %6g %6g %24g %24g %10g' \ % ( a, b, c, x, fx1, fx2, diff ) print '' print 'R8_HYPER_2F1_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) r8_hyper_2f1_test ( ) timestamp ( )