#!/usr/bin/env python def r8_psi ( x ): #*****************************************************************************80 # ## R8_PSI evaluates the function Psi(X). # # Discussion: # # This routine evaluates the logarithmic derivative of the # Gamma function, # # PSI(X) = d/dX ( GAMMA(X) ) / GAMMA(X) # = d/dX LN ( GAMMA(X) ) # # for real X, where either # # - XMAX1 < X < - XMIN, and X is not a negative integer, # # or # # XMIN < X. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 February 2015 # # Author: # # Original FORTRAN77 version by William Cody. # Python version by John Burkardt. # # Reference: # # William Cody, Anthony Strecok, Henry Thacher, # Chebyshev Approximations for the Psi Function, # Mathematics of Computation, # Volume 27, Number 121, January 1973, pages 123-127. # # Parameters: # # Input, real X, the argument of the function. # # Output, real VALUE, the value of the function. # import numpy as np p1 = np.array ( ( \ 4.5104681245762934160E-03, \ 5.4932855833000385356, \ 3.7646693175929276856E+02, \ 7.9525490849151998065E+03, \ 7.1451595818951933210E+04, \ 3.0655976301987365674E+05, \ 6.3606997788964458797E+05, \ 5.8041312783537569993E+05, \ 1.6585695029761022321E+05 )) p2 = np.array ( ( \ -2.7103228277757834192, \ -1.5166271776896121383E+01, \ -1.9784554148719218667E+01, \ -8.8100958828312219821, \ -1.4479614616899842986, \ -7.3689600332394549911E-02, \ -6.5135387732718171306E-21 )) piov4 = 0.78539816339744830962 q1 = np.array ( ( \ 9.6141654774222358525E+01, \ 2.6287715790581193330E+03, \ 2.9862497022250277920E+04, \ 1.6206566091533671639E+05, \ 4.3487880712768329037E+05, \ 5.4256384537269993733E+05, \ 2.4242185002017985252E+05, \ 6.4155223783576225996E-08 )) q2 = np.array ( ( \ 4.4992760373789365846E+01, \ 2.0240955312679931159E+02, \ 2.4736979003315290057E+02, \ 1.0742543875702278326E+02, \ 1.7463965060678569906E+01, \ 8.8427520398873480342E-01 )) x01 = 187.0 x01d = 128.0 x02 = 6.9464496836234126266E-04 xinf = 1.70E+38 xlarge = 2.04E+15 xmax1 = 3.60E+16 xmin1 = 5.89E-39 xsmall = 2.05E-09 w = abs ( x ) aug = 0.0 # # Check for valid arguments, then branch to appropriate algorithm. # if ( xmax1 <= - x or w < xmin1 ): if ( 0.0 < x ): value = - xinf else: value = xinf; return value if ( x < 0.5 ): # # X < 0.5, use reflection formula: psi(1-x) = psi(x) + pi * cot(pi*x) # Use 1/X for PI*COTAN(PI*X) when XMIN1 < |X| <= XSMALL. # if ( w <= xsmall ): aug = - 1.0 / x # # Argument reduction for cotangent. # else: if ( x < 0.0 ): sgn = piov4 else: sgn = - piov4 w = w - int ( w ) nq = int ( w * 4.0 ) w = 4.0 * ( w - float ( nq ) * 0.25 ) # # W is now related to the fractional part of 4.0 * X. # Adjust argument to correspond to values in the first # quadrant and determine the sign. # n = ( nq // 2 ) if ( n + n != nq ): w = 1.0 - w z = piov4 * w if ( ( n % 2 ) != 0 ): sgn = - sgn # # Determine the final value for -pi * cotan(pi*x). # n = ( ( nq + 1 ) // 2 ) if ( ( n % 2 ) == 0 ): # # Check for singularity. # if ( z == 0.0 ): if ( 0.0 < x ): value = - xinf else: value = xinf return value aug = sgn * ( 4.0 / np.tan ( z ) ) else: aug = sgn * ( 4.0 * np.tan ( z ) ) x = 1.0 - x # # 0.5 <= X <= 3.0. # if ( x <= 3.0 ): den = x upper = p1[0] * x for i in range ( 0, 7 ): den = ( den + q1[i] ) * x upper = ( upper + p1[i+1] ) * x den = ( upper + p1[8] ) / ( den + q1[7] ) x = ( x - x01 / x01d ) - x02 value = den * x + aug return value # # 3.0 < X. # if ( x < xlarge ): w = 1.0 / ( x * x ) den = w upper = p2[0] * w for i in range ( 0, 5 ): den = ( den + q2[i] ) * w upper = ( upper + p2[i+1] ) * w aug = ( upper + p2[6] ) / ( den + q2[5] ) - 0.5 / x + aug value = aug + np.log ( x ) return value def r8_psi_test ( ): #*****************************************************************************80 # ## R8_PSI_TEST tests R8_PSI. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 February 2015 # # Author: # # John Burkardt # from psi_values import psi_values print '' print 'R8_PSI_TEST:' print ' R8_PSI evaluates the PSI function.' print '' print ' X PSI(X) R8_PSI(X)' print '' n_data = 0 while ( True ): n_data, x, fx1 = psi_values ( n_data ) if ( n_data == 0 ): break fx2 = r8_psi ( x ) print ' %12g %24.16g %24.16g' % ( x, fx1, fx2 ) print '' print 'R8_PSI_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) r8_psi_test ( ) timestamp ( )